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Chapter 16

Taming Abundance:
On the Relation between Boltzmannian

and Gibbsian Statistical Mechanics

Charlotte Werndl and Roman Frigg

Theoreticians working in statistical mechanics seem to be spoilt
for choice. The theory offers two different theoretical approaches,
one associated with Boltzmann and the other with Gibbs. These
approaches are neither theoretically equivalent nor in any obvious
way inter-translatable. This raises the question about the relation
between them. We argue that Boltzmannian statistical mechanics
(BSM) is a fundamental theory while the Gibbisan approach is an
effective theory, meaning that the former provides a true descrip-
tion of the systems within its scope while the latter offers an algo-
rithm to calculate the values of physical quantities defined by the
fundamental theory. This algorithm is often easier to handle than
the fundamental theory and provides results where the fundamen-
tal theory is intractable. Being an effective theory, the Gibbsian
approach works only within a certain domain of application. We
provide a characterisation of the limits of the approach and argue
that BSM provides correct results in cases in which the two theories
disagree.

16.1. Introduction

Theoreticians working in statistical mechanics (SM) seem to be spoilt
for choice. The theory offers two different theoretical approaches, one
associated with Ludwig Boltzmann and the other with J. Willard
Gibbs. There are significant differences between the two approaches,
which offer distinct descriptions of the same physical system. We
refer to them as Boltzmannian SM (BSM) and Gibbsian SM (GSM)
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respectively. While one can cherish theoretical pluralism as a virtue,
it does raise the question about the relation between the two
approaches because they are neither theoretically equivalent nor
in any obvious way inter-translatable. The question of the relation
between BSM and GSM becomes even more acute when we realise
what functions they perform in the practice of SM. GSM is the
drudge of SM. It provides the tools and methods to carry out a wide
range of equilibrium calculations, and it is the formalism that yields
the results in applications. However, as Lavis (2005) notes, when
the question arises ‘what is actually going on’ in a physical system,
physicists are often quick to desert GSM and offer an account of ‘why
SM works’ in terms of BSM. And discrepancies are not restricted
to foundational issues. In non-equilibrium situations, BSM is usu-
ally the theory of choice because despite many attempts to extend
GSM to non-equilibrium, no workable Gibbsian non-equilibrium the-
ory has emerged (see Frigg (2008), Sklar (1993), and Uffink (2007) for
reviews). But the practice of using one approach for everyday equi-
librium calculations while explaining the non-equilibrium behaviour
of physical systems and giving a foundational account of SM using
the other approach is of questionable legitimacy as long as the rela-
tion between the two approaches remains unclear. What we need is
an account of how the two approaches relate, and the account must
be such that it justifies the customary division of labour. Abundance
must be tamed.

Unfortunately, attempts to give explicit accounts of the relation
between BSM and GSM are few and far between. In part, this is due
to the fact that there is a strand of arguments that downplays the
problem. What drives such views is the claim that the two approaches
are empirically equivalent, at least as far as equilibrium calculations
are concerned.1 Theoretical differences can then be brushed aside
because discrepancies concerning foundational issues are something
that one can live with. This argument is problematic for two rea-
sons. First, while it is true that GSM and BSM produce the same

1See, for instance, Davey (2009, pp. 566–567) and Wallace (2015, p. 289). Argu-
ments for special cases are given in Lavis (2005).
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predictions in many cases, agreement is not universal. In fact, there
are important cases where GSM and BSM make conflicting predic-
tions, which implies that GSM and BSM are not empirically equiv-
alent (Werndl and Frigg, 2017b, 2019a). This forecloses the escape
route of non-committal theoretical pluralism.

Where the status of one theory vis-à-vis the other is explicitly
discussed, either the view is that GSM and BSM have to be reconciled
(Lavis, 2005), or it is suggested that GSM is the preferred formulation
of SM (Wallace, 2015). We are taking a different route and claim
that BSM is a fundamental theory while GSM is an effective theory.
This means that BSM provides a true description of the systems
within the scope of SM; GSM offers an algorithm to calculate values
defined by the fundamental theory. The algorithm is often easier to
handle than the fundamental theory and provides result where the
fundamental theory is intractable. Like every effective theory, GSM
works only within a certain domain of application. We provide a
characterisation of the limits of GSM, and argue that BSM provides
the correct results in cases in which the two theories disagree.

We discuss both approaches in the setting of classical systems.
For want of space, we state definitions and theorems only for the
deterministic case. The generalisation to stochastic classical systems
is straightforward,2 and in Section 16.3, we briefly discuss an example
that has a stochastic time evolution. There is an interesting question,
whether our approach generalises to quantum statistical mechanics.
While we are optimistic that it does, we acknowledge that, given the
current state of the discussion, this claim is largely speculative. The
reason for this is that no generally accepted quantum formulation of
BSM is currently available,3 and so we lack the theoretical basis to
compare BSM with GSM.

The paper is structured as follows. In Section 16.2 we introduce
BSM and GSM; and in Section 16.3 we note that they are not
empirically equivalent. In Section 16.4 we draw a contrast between

2Statements of the relevant definitions and results can be found in Werndl and
Frigg (2017a, 2019a).
3See Dizadji-Bahmani (2011) for a discussion.
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fundamental and effective theories and argue that GSM is an effec-
tive theory while BSM is a fundamental theory. Effective theories
are not universally applicable, and the most useful effective theories
are ones for which we know the domain of applicability. In Section
16.5 we offer sufficient conditions for GSM to provide correct results.
In Section 16.6 we briefly summarise our results and point out that
regarding GSM as an effective theory has important repercussions
for a number of projects, in particular, attempts to turn GSM into
a non-equilibrium theory.

16.2. A primer on BSM and GSM

SM studies physical systems like a gas in a container, a magnet on a
laboratory table and a liquid in jar. Described mathematically, these
systems have the structure of a measure-preserving dynamical system,
i.e. a quadruple (X,ΣX , Tt, μ). X is the state space of the system, i.e.
a set containing all possible micro-states the system can be in. For a
gas with n molecules, X has 6n dimensions: three dimensions for the
position of each particle and three dimensions for the corresponding
momenta. ΣX is a σ-algebra on X and μ is a measure on (X,ΣX)
(it is required to be invariant under the dynamics, meaning that
μX(Tt(A)) = μX(A) for all A ∈ ΣX and all t). The dynamics of the
model is given by an evolution function Tt : X → X, where t ∈ R

if time is continuous and t ∈ Z if time is discrete. Tt is assumed
to be measurable in (t, x) and to satisfy the requirement Tt1+t2(x) =
Tt2(Tt1(x)) for all x ∈ X and all t1, t2 ∈ R or Z. If at a certain point of
time t0 the system is in micro-state x0, then it will be in state Tt(x0)
at a later time t. For systems that are governed by an equation of
motion such as Newton’s equation, Tt corresponds to the solutions
of this equation. The solution (or trajectory) through a point x in X
is the function sx : R → X, sx(t) = Tt(x) (and mutatatis mutandis
for discrete time).

At the macro-level, the system is characterised by a set of macro-
variables, which are measurable functions vi : X → Vi, associating
a value with each point in state space. Examples of macro-variables
include volume, internal energy, and magnetisation. Mathematically
speaking, macro-variables are real-valued functions on the state
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space, i.e. f : X → R. For example, if f is the magnetisation of
the system and the system is in micro-state x, then f(x) is the mag-
netisation of the system.

Both BSM and GSM share this characterisation of systems. What
they disagree about is how statistical assumptions are introduced
into SM and about what the observables of the theory are. We now
introduce each theory in turn and describe how they differ.

In BSM, a system is in a particular macro-state at any given time.
A macro-state is defined by the values of a set of macro-variables
{v1, . . . , vl} (l ∈ N). We use capital letters Vi to denote the values of vi.
A macro-state is then defined by a particular set of values {V1, . . . , Vl}.
That is, the model is in macro-state MV1,...,Vl

iff v1 = V1, . . . , vl =
Vl.4 A central posit of BSM is that macro-states supervene on micro-
states, implying that at a system’s micro-state uniquely determines
its macro-state. This determination relation is normally many-to-one.
Therefore, every macro-state M is associated with a macro-region
XM consisting of all micro-states for which the system is in M . For a
complete set of macro-states the macro-regions form a partition of X
(i.e. the different XM do not overlap and jointly cover X).

One of these macro-states is the equilibrium macro-state of the
system. Intuitively speaking, a system is in equilibrium when its
properties do not change. This intuition is built into thermodynam-
ics, where a system is said to be in equilibrium when all change
has come to a halt and the thermodynamic properties of the system
remain constant over time (Fermi, 2000, 4). However, such a defini-
tion of equilibrium cannot be implemented in SM because measure-
preserving dynamical systems are time reversal invariant and, if they
are bounded, also exhibit Poincaré recurrence. As a consequence,
when the time evolution of a system unfolds without any outside
influence, the system will eventually return arbitrarily close to the
micro-state in which it started. Hence a system starting outside
equilibrium (for instance, when the gas was confined to one half of

4Sometimes it is also useful to define macro-states by interval ranges, i.e. by the
macro-variables taking values in a certain range or interval. One can then say that
the model is in macro-state M[A1,B1],...,[Al,Bl] iff V1 ∈ [A1, B1], . . . , Vl ∈ [Al, Bl]
for suitably chosen intervals.
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the container) will eventually return to that macro-state. So in SM
no system will remain in any state forever. Obviously, this precludes
a definition of equilibrium as the state which the system never leaves
once it has reached it. Different formulations of BSM offer different
prescriptions of how exactly to define equilibrium in SM. We base
our discussion on the long-run residence time definition of equilib-
rium, which aims to come as close to the thermodynamic definition
of equilibrium as the mathematical constraints imposed by measure-
preserving dynamical systems permit (Werndl and Frigg, 2015); we
briefly comment on the typicality version of BSM below and point
out that our main conclusion can equally be reached from this alter-
native point of view (and hence does not depend on which reading
of BSM one adopts).

To give a formal statement of this definition, we first need the
concept of the long-run fraction of time LFA(x) that a system spends
in a subset A of X5:

LFA(x) = lim
t→∞

1
t

∫ t

0
1A(Tτ (x))dτ, (16.1)

where 1A(x) is the characteristic function of A: 1A(x) = 1 for x ∈ A
and 0 otherwise. Note that long-run fractions depend on the initial
condition.

The notion of ‘most of the time’ can be read in two different
ways, giving rise to two different notions of equilibrium. The first
introduces a lower bound of 1/2 for the fraction of time; it then
stipulates that whenever a model spends more than half of the time
in a particular macro-state, this is the equilibrium state of the model.
Mathematically, let α be a real number in (1

2 , 1], and let ε be a
very small positive real number. If there is a macro-state MV ∗

1 ,...,V
∗
l

satisfying the following condition, then that state is the system’s
α-ε-equilibrium state:

There exists a set Y ⊆ X such that μX(Y ) ≥ 1 − ε, and
all initial states x ∈ Y satisfy LFXMV ∗

1 ,...,V ∗
l

(x) ≥ α. A

5We state the definitions for continuous time. The corresponding definitions for
discrete time are obtained simply by replacing the integrals by sums.
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system is in equilibrium at time t iff its micro-state at t,
xt, is in XMV ∗

1 ,...,V ∗
l
.

According to the second reading, ‘most of the time’ refers to the
fact that the model spends more time in the equilibrium state than
in any other state (and this can be less than 50% of its time). Mathe-
matically, let γ be a real number in (0, 1] and let ε be a small positive
real number. If there is a macro-state MV ∗

1 ,...,V
∗
l

satisfying the follow-
ing condition, then that state is the system’s γ-ε-equilibrium state:

There exists a set Y ⊆ X such that μX(Y ) ≥ 1− ε and for
all initial conditions x ∈ Y : LFXMV ∗

1 ,...,V ∗
l

(x) ≥ LFZM(x)+

γ for all macro-states M �= XV ∗
1 ,...,V ∗

l
. Again, a system is

in equilibrium at time t iff its micro-state at t, xt, is in
XMV ∗

1 ,...,V ∗
l
.

It should come as no surprise that these two notions are not equiv-
alent. More specifically, an α-ε-equilibrium is strictly stronger than a
γ-ε-equilibrium in the sense that the existence of the former implies
the existence of the latter but not vice versa.

These definitions are about the time a model spends in the equilib-
rium state. Hence it is not immediately clear what they imply about
the size of the equilibrium macro-regions. It turns out that equi-
librium regions, thus defined, are the largest macro-regions. More
specifically, a macro-region is called β-dominant if its measure is
greater or equal to β for a particular β ∈ (1

2 , 1]. A macro-region is
called δ-prevalent if its measure is larger than the measure of any
other macro-region by a margin of at least δ > 0. The following
theorems can then be proved (Werndl and Frigg, 2015b, 2017b):

Dominance Theorem: IfMα-ε-eq is an α-ε-equilibrium, then
the following holds for β = α(1 − ε): μX(XMα-ε-eq) ≥ β.6

Prevalence Theorem: If Mγ-ε-eq is a γ-ε-equilibrium, then
the following holds for δ = γ − ε: μX(XMγ-ε-eq ) ≥
μX(XM ) + δ.7

6We assume that ε is small enough so that α(1 − ε) > 1
2
.

7We assume that ε < γ.
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It is a consequence of these definitions that a system is not always
in equilibrium and that it does fluctuate away from equilibrium. This
is a radical departure from thermodynamics. It is therefore worth
pointing out that this is not merely a concession to the demands of
measure-preserving dynamical systems. Having no fluctuations at all
is also physically undesirable. There are experimental results that
show that equilibrium is not the immutable state that classical ther-
modynamics presents us with because systems exhibit fluctuations
away from equilibrium (MacDonald, 1962; Wang et al., 2002). Hence
adopting a notion of equilibrium that allows for fluctuations increases
the empirical adequacy of the theory.

Before turning to GSM, we would like to comment briefly on an
alternative version of BSM, namely the typicality approach. In his
seminal 1877 paper, Boltzmann introduced what is today known as
the combinatorial argument. It is a consequence of this argument that
the equilibrium macro-region of an ideal gas is by far the largest
macro-region. This prevalence of the equilibrium macro-region can
be described in terms of typicality : equilibrium micro-states are typ-
ical in X because they occupy a region that is much larger than the
region occupied by non-equilibrium states. Typicality then affords
an explanation of the thermodynamic behaviour of a gas. As Gold-
stein puts it, because the phase space “consists almost entirely of
phase points in the equilibrium macrostate”, “[f]or a non-equilibrium
phase point [x] of energy E, the Hamiltonian dynamics governing the
motion [x(t)] would have to be ridiculously special to avoid reason-
ably quickly carrying [x(t)] into [the equilibrium macro-region] and
keeping it there for an extremely long time” (2001, pp. 43–44).8

So the typicality approach reaches the same conclusion as the
long-run residence time approach, namely that the system spends
most of its time in equilibrium. The two approaches differ in how

8The combinatorial argument is introduced in Boltzmann’s (1877); for discus-
sions of this argument, see Albert’s (2000), Frigg’s (2008) and Uffink’s (2007).
The typicality approach originates in Goldstein’s (2001) and Lebowitz’s (1993a,
1993b). Discussions of typicality and its use in GSM can be found in Frigg’s
(2009, 2010), Frigg and Werndl’s (2011), Uffink’s (2007), Volchan’s (2007), and
Wilhelm’s (forthcoming).
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they reach the conclusion — in fact, they reach them in reverse order.
The typicality approach takes as its point of departure the fact that
the equilibrium macro-region is the largest macro-region and argues
that this has the consequence that the system spends most of its
time in equilibrium; the long-run residence time approach defines
equilibrium as the state in which the system spends most of its time
and then establishes that this implies that the equilibrium macro-
region is also the largest region (either in the sense of prevalence or
in the sense of dominance). At this point, we are not concerned with
the pros and cons of these approaches; nor are we concerned with
their relative advantages vis-à-vis each other. What matters at this
point is that both see equilibrium as the state in which the system
spends most of its time, and hence the main point that we are making
in this paper — that BSM is the fundamental theory while GSM is
an effective theory — can equally be made from both perspectives.

The core object that is studied in GSM is a probability density
(or distribution) ρ(x, t) over X.9 The density ρ(x, t) describes the
probability of finding the state of a system in a region R ⊆ X at
time t:

pt(R) =
∫
R
ρ(x, t)dx. (16.2)

On physical grounds, the probability density must be conserved,
meaning that for every region R(t) of X that is moving forward
under the time evolution Tt, the probability must be constant. If
the time evolution is generated by Hamiltonian equations of motion,
this is the case if and only if the Liouville’s equation holds (Tolman,
1938).

Gibbs (1902, p. 8) introduces what he refers to as the condition
of statistical equilibrium: a probability density is in statistical equi-
librium iff it is stationary. That is, if it does not change under the

9In Gibbs’ (1902) original presentation, ρ(x) is described as representing an
ensemble, an infinite collection of independent systems that are governed by the
same laws of motion but are in different initial states. There are alternative presen-
tations that endeavour to avoid reference to ensembles; they regard GSM simply
as probabilistic algorithm. What follows does not depend on these interpretational
issues and hence we set this question aside. Various different interpretations of
GSM are discussed in Frigg and Werndl (2019).



March 24, 2020 14:50 Statistical Mechanics and Scientific Explanation 9in x 6in b3714-ch16 page 626

626 C. Werndl & R. Frigg

dynamics of the system: ρ(x, t) = ρ(x) for all t. There are usually a
large number of stationary density functions for a given Tt. Hence,
the question arises, which of these is the best to characterise a given
physical situation. According to Gibbs, the so-called microcanonical
distribution describes the equilibrium of a physical system which is
completely isolated from its environment. It is the constant distri-
bution on the system’s energy hypersurface H(x) = E. The canon-
ical distribution should be used when the system is in contact with
a heat bath. It is given by e−H(x)/kT /ζT , where H is the system’s
Hamiltonian, T is the temperature, k is the Boltzmann constant, and
ζT is the so-called partition function. For a discussion how to justify
the choice of these distributions, see Frigg and Werndl’s (2019) and
Myrvold’s (2016).

How do Gibbsian probability densities connect to observations
on physical systems? That is, what does an experimentalist observe
when measuring, say, the magnetisation of a sample of iron? To reply
to this question, we first introduce the phase average 〈f〉 of a macro-
variable f :

〈f〉 =
∫
X
f(x)ρ(x, t)dx. (16.3)

When the system is in statistical equilibrium, it follows that 〈f〉
is time-independent. Standardly, a connection between the Gibbsian
probability density and observable results is established by appealing
to the averaging principle (AP). According to this principle, when
observing the physical quantity associated with f on a system in
equilibrium, then the observed equilibrium value of f is the phase
average 〈f〉. When reviewing textbooks of statistical mechanics, it
becomes clear that many textbooks explicitly state and endorse this
principle (for a more detailed discussion of the principle, see Werndl
and Frigg’s (2019a), and references therein). For example, Chandler
calls AP “[t]he primary assumption of statistical mechanics” (1987,
p. 58), and Pathria and Beale state that they regard AP as the
“the most important result” in SM (2011, p. 31). For this reason
our discussion in Section 16.4 is based on a version of GSM that
incorporates AP. However, there are alternative interpretations of
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GSM that do not accept AP. We will comment on how our arguments
carry over to these alternative versions at the end of Section 16.5.

These brief summaries of BSM and GSM should make it clear how
distinct the two theories are; in particular, their characterisations of
equilibrium are entirely different. BSM first introduces macro-states
and then defines the equilibrium macro-state as the macro-state in
which the system spends most of its time. In doing so, it explicitly
allows systems to fluctuate away from the equilibrium state every
now and then. In GSM, by contrast, equilibrium is a property of a
probability distribution. More specifically, it is defined as a station-
ary probability distribution. Observable equilibrium properties are
equated with the phase averages of macro-variables, and these phase
averages stay constant over time if the distribution is in equilibrium.

So we seem to find ourselves in the disconcerting situation that
when we talk about ‘statistical mechanics’, it is unclear whether we
mean BSM or GSM (or both), and that the two theories are different
in important respects.

As a first reaction, one might try to downplay the problem by
arguing that despite their theoretical differences, the formalisms
are empirically equivalent, at least as far as equilibrium proper-
ties are concerned. This immediately raises a prior question: what
does it mean for BSM and GSM to be empirically equivalent? The
Boltzmannian notion of equilibrium is formulated to mirror the ther-
modynamic notion of equilibrium; the Gibbsian notion of statis-
tical equilibrium connects to thermodynamic equilibrium through
the averaging principle. Hence it is natural to think that Gibbsian
phase averages, Boltzmannian equilibrium values, and thermody-
namic equilibrium values should all coincide. This suggests that the
following is a necessary condition for the empirical equivalence of
BSM and GSM:

F ≈ 〈f〉 (16.4)

holds for all macro-variables f in all systems that fall within the
scope of both theories, where F is the Boltzmannian equilibrium
value of f and ‘≈’ means that the two values are approximately equal.
We refer to Equation (16.4) as the mechanical averaging equation
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(‘mechanical’ because the principle connects two mechanical quan-
tities, namely equilibrium values in BSM and equilibrium values in
GSM). The question now is whether this principle holds true.

16.3. When the mechanical averaging equation fails

BSM and GSM turn out not to be empirically equivalent. Boltzman-
nian equilibrium values and Gibbsian phase averages do agree for
paradigmatic examples, such as the dilute gas with macro-variables
that assign the same value to all states that are in the Maxwell-
Boltzmann distribution (or in a distribution that is very close to
the Maxwell-Boltzmann distribution). Yet there are important cases
where F and 〈f〉 are substantially different. This shows that the
mechanical averaging equation does not hold generally. We will now
present the six vertex model with the internal energy macro-variable
as an example in which Gibbsian and Boltzmannian calculations
come apart for any finite number of particles N . Further examples
where the Boltzmannian equilibrium values and the Gibbsian phase
averages disagree are discussed in Werndl and Frigg’s (2019a).

Consider a two-dimensional quadratic lattice with N grid points
that lies on a two-dimensional torus (which allows us to neglect bor-
der effect because on a torus every grid point has exactly four nearest
neighbours). The ‘vertices’ are the grid points, and each vertex is con-
nected to its four nearest neighbours by an edge. On each edge, there
is an arrow pointing either toward the vertex or away from it. A rule
known as the ‘ice-rule’ is now imposed: the arrows have to be dis-
tributed such that at each vertex in the lattice there are exactly two
outward and two inward pointing arrows. As shown in Figure 16.1,
at every vertex there are exactly six configurations of the arrows that
satisfy the ice-rule. The ice rule is satisfied by water ice and several
crystals including potassium dihydrogen phosphate (Baxter, 1982;
Lavis and Bell, 1999).

The micro-state of the six-vertex model κ = (κ1, . . . , κN ) is spec-
ified by assigning to each vertex in the model one of the six types of
configurations of the arrows permitted by the ice rule. Each of the
six configurations has a certain energy εi, 1 ≤ i ≤ 6. Denote by ε(κj),
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Fig. 16.1. The configurations of the six-vertex model.

the energy or the jth vertex (thus the ε(κj) range over the εi). Then,
the energy of the state κ is:

E(κ) =
N∑
j=1

ε(κj). (16.5)

We make the common assumption that the energy of the different
configurations is ε1 = ε2 = 0 and ε3 = ε4 = ε5 = ε6 = 1 (cf. Lavis
and Bell, 1999, p. 299). The canonical distribution

ρ(κ) = e−E(κ)/kT /ζT (16.6)

to be used in calculations with

ζT =
∑
κ

e−E(κ)/kT (16.7)

is usually taken to be the probability distribution. There are many
versions of the six-vertex model, but most versions work with a
stochastic dynamics that is assumed to be an irreducible Markov
model. Note that the canonical distribution is historically associated
with Gibbs. Yet this should not mislead us to believe that we treat
the model in a Gibbsian way right from the start. The canonical dis-
tribution per se is neither Gibbsian nor Boltzmannian and is simply
used here as a probability distribution that can figure in either BSM
or GSM.10

10As noted in the Introduction, BSM can be formulated with stochastic rather
than a deterministic time evolution. In most basic terms, this means that one
replaces Tt with a stochastic algorithm, and such algorithms can be formulated
using the canonical distribution. For details, see Werndl and Frigg (2017a).
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Let us now consider the internal energy defined in Equation (16.5)
as the relevant macro-variable. From the Boltzmannian perspective,
the state space consist of all possible states κ which satisfy the ice
rule. E = 0 is the lowest energy value and it defines a macro-state
M0 with the corresponding macro-region X̄M0 = {κ∗, κ+}, where κ∗

is the state for which all vertices are in the first configuration, and
κ+ is the state for which all vertices are in the second configuration.
Suppose now that the number of vertices N is a sufficiently large but
finite number. Due to the fact that for sufficiently low values of the
temperature T , the probability mass is concentrated on the two low-
est energy states, it is the case that X̄M0 is the largest macro-region
for sufficiently low temperatures. For an irreducible Markov process,
the model spends more time in the largest macro-region than in any
other of the macro-regions. For this reason, M0 is a Boltzmannian
γ-0-equilibrium, and the Boltzmannian equilibrium value is E = 0.

In the Gibbsian treatment, ρ(κ) is the stationary equilibrium dis-
tribution and the observable f is of course the internal energy. We
know that the internal energy assumes its lowest value E = 0 only
for the two specific micro-states κ∗ and κ+, and that it will assume
higher values for all other micro-states (and we know that for any
T > 0 there will be a non-zero probability assigned to these higher
energy states). Consequently, the phase average 〈E〉 is greater than 0;
thus it is higher than the Boltzmannian equilibrium value, implying
that the mechanical averaging equation fails.

It is not difficult to see that this difference can be significant:
choose a T such that {κ∗, κ+} is the largest macro-region while its
probability is less than 0.5.11 In such a case, the Boltzmannian equi-
librium value is still E = 0. For the six vertex model, the second
lowest macro-value is E =

√
N , which corresponds to the energy of

micro-states where all columns except one are taken up by states with
the first or the second configuration, and the states in the exceptional

11This is possible because the higher the temperature, the more uniform the
probability distribution. Consequently, for sufficiently high values of T , the largest
macro-region is different from {κ∗, κ+}. Because of the continuity of the canonical
distribution, there has to be a T such that {κ∗, κ+} is the largest equilibrium
macro-region while its probability is less than 0.5.
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row are all states of the third or fourth configuration.12 Consequently,
〈E〉 is higher than

√
N/2, implying that the Gibbsian phase aver-

age and the Boltzmannian equilibrium value will differ by at least√
N/2. This is clearly not a negligible difference, in particular for

large N , and hence the mechanical averaging equation fails. This
is underscored by the fact that the Boltzmannian macro-value that
is closest to the value obtained from Gibbsian phase averaging is
higher or equal to

√
N . And a Boltzmannian macro-value of higher

or equal to
√
N is different from 0, the Boltzmannian macro-value in

equilibrium.13

16.4. GSM as an effective theory

We argued that GSM and BMS are not empirically equivalent, which
forces upon us the question of how the two approaches relate to
one another and of which prediction is correct if they disagree. The
answer to these question, we submit, lies in the realisation that BSM
and GSM are not alternative theories that are on par with each
other. Rather, GSM is an effective theory while BSM is the funda-
mental theory. This implies that in situations where Boltzmannian
and Gibbsian equilibrium values come apart, the Boltzmannian val-
ues are the correct values.

12This is the smallest possible departure from states with zero energy: it can be
shown that the number of downward pointing arrows is the same for all rows. From
this it follows that there has to be a perturbation in each row. Therefore

√
N is

the second lowest value of the internal energy (Lavis and Bell, 1999, Chapter 10).
13We note that the internal energy macro-variable considered here is an extensive
macrovariable, i.e. it depends on the number of constituents of the system. If one
instead considers the energy density, an intensive macro-variable, then one finds
that the difference between the Gibbsian and Boltzmannian equilibrium calcula-
tions tends toward zero as N → ∞ because

√
N/2N → 0. This illustrates the

point that whether or not Gibbsian and Boltzmannian calculations agree crucially
depends on the macro-variable. Yet we note that the problems we are discussing
cannot be dissolved simply by restricting attention to intensive variables. Exten-
sive variables are important (cf. Lieb and Yngvason, 1999), and, as discussed in
Werndl and Frigg (2019a), in some cases there differences between Gibbsian and
Boltzmannian values both for intensive and extensive variables.
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To add specificity to the claim that GSM is an effective theory we
have to characterise effective theories in more detail. Physicist James
Wells says that effective theories “are theories because they are able
to organise phenomena under an efficient set of principles, and they
are effective because it is not impossibly complex to compute out-
comes” (2012, p. 1). The ability of effective theories to provide results
comes at the cost of incompleteness. As Wells puts it, “[t]he only way
a theory can be effective is if it is manifestly incomplete [...] Any good
Effective Theory systematises what is irrelevant for the purposes at
hand. In short, an Effective Theory enables a useful prediction with a
finite number of input parameters.” (ibid.) His examples of effective
theories are Galileo’s law of falling bodies, the harmonic oscillator,
classical gravity, and effective theories of particle masses.

Our suggestion is that GSM should be added to this list because
it fits Wells’ criteria. First, by offering a characterisation of equilib-
rium in terms of stationary distributions, GSM offers an organisation
of phenomena under the umbrella of small set of principles. Second,
GSM offers actionable principles and tractable methods to calculate
equilibrium values of large array of materials, which makes it an effi-
cient tool for computations. Third, GSM is incomplete in a number of
ways. As noted in Section 16.2, GSM is unconcerned with the dynam-
ics of the model. The role of the system’s dynamics in GSM is reduced
to ensuring that the proposed equilibrium distribution is stationary,
and no other properties of the dynamics play any role in the theory.
GSM considers neither equations of motion nor dynamical laws; it
completely disregards trajectories; no time averages along trajecto-
ries are studied; and the initial conditions are left unspecified.14 The
system’s dynamics is considered immaterial to understanding equilib-
rium as long as it — somehow — produces the stationary distribution
that enters into the calculations. The system’s Hamiltonian is used in
formulating the most common Gibbsian distributions — the micro-
canonical and the canonical distributions — but a Hamiltonian does

14Notions of this kind are sometimes considered in attempts to justify the
Gibbsian formalism, but they are not part of the formalism itself. For a discussion
of justificatory endeavours see, for instance, Frigg’s (2008).



March 24, 2020 14:50 Statistical Mechanics and Scientific Explanation 9in x 6in b3714-ch16 page 633

Taming Abundance 633

not, by itself, provide dynamical information. The Hamiltonian of the
system becomes relevant to the dynamics only when combined with
equations of motions or when used in the formulation of a stochastic
process, which is not part of the Gibbsian formalism. The Gibbsian
phase averages are the same for all time evolutions that are such that
ρ is invariant over time, no matter how different they may otherwise
be. Finally, GSM is explicit about what it omits, and it thereby sys-
tematises what it regards as irrelevant.

These features of GSM stand in stark contrast with BSM,
where dynamical considerations occupy centre stage. As we saw
in Section 16.2, GSM introduces macro-states with corresponding
macro-regions, and then defines equilibrium in explicitly dynamical
terms (namely, as the macro-state whose macro-region is such that, in
the long run, the system’s state spends most of its time in that
macro-region). Under the assumption (adopted in this paper) that
the world is classical and that systems are governed by classical laws
of motion, the dynamics considered in BSM is the true dynamics
at the fundamental level: the unabridged and unidealised dynamics
with all interactions between all micro-constituents of the system.
Equilibrium results from macro-states that are defined in terms of
macro-variables that supervene on the true micro-dynamics of the
system, and where a system fluctuates away from equilibrium it does
so as a result of the true underlying dynamics. The theory gives a
full account of what happens in a classical world — nothing is left
out and nothing is averaged over. BSM therefore is the fundamental
theory.

Since a true and complete fundamental theory cannot be wrong,
the results of BSM are the correct results in cases where BSM and
GSM disagree. Consider the example of magnet with the macro-
variable of total magentization m as discussed in Werndl and Frigg’s
(2019a). Such a system can be represented by the Ising model. Exper-
iments show a phase transition as the temperature is varied. Calcu-
lations in the Boltzmannian framework show this phase transition
as one would expect. Yet the Gibbsian account fails to describe the
phase transition successfully because it yields that 〈m〉 = 0 for all
temperature values. Hence, the results of BSM are in agreement with
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the experimental results but the Gibbsian results obtained by phase
averaging are not.

The flip side of fundamentality often is intractability, and BSM is
no exception. If one wants to find out whether a Boltzmannian equi-
librium exists, and if so, determine the equilibrium state, then one
has to explicitly specify the macro-state structure of the system and
determine the macro-states’ macro-regions; one has to know enough
about the underlying dynamics to be able to calculate the long-run
fractions of time that a model spends in each macro-region; and one
has to be able to estimate the measure of the set of initial conditions
that lie on trajectories that do not have well-behaved long-run frac-
tions of time. This is feasible only in very special cases (for instance,
if the dynamics is ergodic); in general, it is a dead end because it
requires more information than we have. The omissions in effective
theories are designed to eliminate these intractabilities and deliver
workable recipes. So the omissions and simplifications are what make
effective theories effective!

Relegating a host of things to the realm of irrelevance comes at
a cost. Wells is careful in pointing out that whenever we recognise a
theory as an effective theory we will also have to “confront a theory’s
flaws, its incompletenesses, and its domain of applicability as an inte-
gral part of the theory enterprise” (ibid.). In other words, effective
theories have limited domains of applicability, and using the theory
correctly requires scientists to know where the limits are. For this
reason, Wells notes that “[t]he most useful Effective Theories are
ones where we know well their domains of applicability” (ibid.).

So if we view GSM as an effective theory, we have to be able to
delimit its range of application. That is, we have to be able to say
when it yields trustworthy results and when its procedures fail to
deliver. This is the task to which we turn now.

16.5. The boundaries of effectiveness

Recall that for BSM and GSM to agree on a system’s equilibrium
properties it must be the case that F ≈ 〈f〉 (where F is the
Boltzmannian equilibrium value), and agreement is a necessary
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condition for BSM to be effective. This can be the case under several
different conditions. We will now discuss four conditions that are
individually sufficient for F ≈ 〈f〉 to hold: the Khinchin condition,
the requirement that fluctuations be small, the averaging equivalence
theorem and the cancelling out theorem. However, note that these
conditions are not necessary and there could be other conditions that
guarantee that the phase average equals the Boltzmannian equilib-
rium value.

It is trivial that phase averages and Boltzmannian equilibrium
values are identical if the macro-variables under considerations take
the same value everywhere, i.e. f(x) = c for all x in X and a con-
stant c. Then, F = 〈f〉 = c. Clearly, such macro-variables are not
interesting; yet, they raise a useful question: how far does one have to
move away from this uninteresting case to obtain a useful condition
while still retain the basic idea? The Khinchin condition provides an
answer to this question.15

First of all, we need the notion of a fluctuation. For an arbitrary
micro-state x consider the difference between the value f(x) (the
true value of the observable if the model is in state x) and the phase
average:

Δf(x) = f(x)− 〈f〉. (16.8)

Δf(x) is the fluctuation when the system is in micro-state x, and
|Δf(x)| is the magnitude of the fluctuation. The Khinchin condition
then requires that there is a subset X̄ of X with μ(X̄) = 1− δ for a
very small δ ≥ 0 such that |Δf(x)| = 0 for all x in X̄.

If the condition is satisfied, we have F = 〈f〉, which can be seen as
follows. Assume that a Boltzmannian equilibrium exists and that F is

15The condition owes its name to Khinchin (1949), who engaged in a system-
atic study of functions that satisfy strong symmetry requirements and there-
fore have small fluctuations for systems with a large number of constituents.
There are at least two versions of the condition. We here focus on the first ver-
sion, which is the one appealed to, amongst others, by Wallace (2015, p. 289),
Lavis (2005, pp. 267–268); Malament and Zabell (1980, pp. 344–345), and Vranas
(1998, p. 693). The second version is appealed to in Ehrenfest and Ehrenfest-
Afanassjewa’s (1959, pp. 46–52) and discussed in Werndl and Frigg’s (2019c).
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the Boltzmannian equilibrium value of f . According to the Khinchin
condition, then there are only a few states (of at most measure δ)
whose macro-values differ from 〈f〉. It is clear that these ‘excep-
tional’ states cannot form the Boltzmannian equilibrium macro-
state because the macro-region corresponding to the Boltzmannian
macro-state is the largest macro-region. For this reason the set of
micro-states for which f(x) = F has to be the macro-region of the
Boltzmannian macro-state, and for the states in that region it follows
that F = 〈f〉. We conclude that if the Khinchin condition is satisfied,
then BSM equilibrium value and the Gibbsian phase average agree.
The paradigmatic example for the Khinchin condition is the dilute
gas with macro-variables that assign the same value to all states that
are in the Maxwell-Boltzmann distribution, or in a distribution that
is very close to the Maxwell-Boltzmann distribution (Ehrenfest and
Ehrenrest-Afanassjewa, 1959).

An alternative approach focuses on the statistics of fluctuation
patterns, and then shows that GSM reproduces the fluctuation pat-
terms of BSM under certain conditions. More specifically, let us start
by looking at fluctuations from a Gibbsian perspective. The core idea
here is to use the probabilities of GSM as given in Equation (16.2)
to calculate the probability that a fluctuation of a certain magnitude
occurs. In more detail: given an interval δ := [δ1, δ2], where δ1 and
δ2 are real numbers such that 0 ≤ δ1 ≤ δ2, Equation (16.2) can then
be used to arrive at the probability for a fluctuation of a magnitude
between δ1 and δ2 to occur:

p(δ) =
∫
D
ρ(x)dx, (16.9)

where D = {x ∈ X : δ1 ≤ |f(x)| ≤ δ2}.
It is important to interpret the scope of this equation correctly.

Sometimes the probabilities in Equation (16.2) are interpreted as
holding universally; that is, ρ is seen as providing the correct prob-
abilities for the state of a system to be in region R at time t for all
R in X and for any time t. Under such an interpretation, the fluc-
tuation probabilities in Equation (16.9) are then seen as universal in
the sense that for any magnitude and for any time t, p(δ) gives the
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probability for a fluctuation of a certain magnitude to occur at t. Yet
universality of this kind is a very strong demand and fails in general.
A careful study of GSM reveals that at least one of two conditions
have to be met in order for this to be the case (for more on those
two conditions, see Frigg and Werndl, 2019). First, the masking con-
dition requires either that the system has access to all parts of phase
space, or, if that is not the case, that f must be such that the propor-
tion of states for which f assumes a particular value is the same in
each invariant subset of X. Second, f -independence (roughly) states
that the dynamics of the system must be such that the probability of
finding a specific value of f in two consecutive yet sufficiently tempo-
rally distant measurements have to be (approximately) independent
of each other. The Gibbsian ρ can be used to calculate correct fluctu-
ation probabilities only if at least one of these conditions is satisfied.
These conditions limit the scope of GSM in determining fluctuations.
Since both conditions are strong conditions on the dynamics and the
macro-variables, their satisfaction cannot be taken for granted and
they limit the scope of GSM in determining fluctuations.

Let us now turn to BSM and first focus on the masking condi-
tion and explain how, from the perspective of BSM, the fluctuation
probabilities of Equation (16.9) turn out to be correct. The starting
point for the masking condition is to observe the behaviour of the
same system over time and to consider the fluctuations that arise in
this way. What this amounts to is to track the system over an infinite
period of time when the system starts in a particular initial condition
and its state evolves under the dynamics of the system. According to
the masking condition, either the system can access all parts of X or
the proportion of states for which f assumes a particular value is the
same in each invariant subset of X. From this it follows immediately
that from a Boltzmannian perspective, the fluctuations that arise in
the same system over an infinite period of time are equal to the prob-
abilities assigned to the fluctuations by the measure ρ, implying that
Equation (16.9) holds. For example, suppose that a system spends,
say, β of its time in a certain macro-state for which the function f

assumes the value F ′. Then, for this macro-state, the magnitude of
the fluctuation away from the phase average is |F ′ − 〈f〉|. Suppose
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that δ0 is the interval that consists only of |F ′−〈f〉|. Then the prob-
ability p(δ0) has to be β.

Let us now turn to the second condition, i.e. f -independence, and
again explain how in the Boltzmannian framework the fluctuation
probabilities of Equation (16.9) turn out to be the correct ones. For
an observable f with a finite number of macro-states, suppose that
the dynamics of the system is such that for two points of time t1
and t2 that are sufficiently far apart f -independence holds, mean-
ing that the probability of finding a specific value of f in the two
measurements are approximately independent of each other. From
a Boltzmannian perspective, this immediately implies that, given a
specific macro-value at t1, the probability of finding the system in a
macro-value at t2 is given by the probability measure ρ, and hence
again Equation (16.9) holds. For example, suppose that the measure
assigns β to a certain macro-state for which the function f assumes
the value F ′. For this macro-state, the magnitude of the fluctuations
away from the phase average is |F ′ − 〈f〉|. Suppose δ0 is the interval
consisting only of |F ′ − 〈f〉|. It then follows that, assuming that the
system was in a certain macro-state at t1, the probability of obtain-
ing the fluctuation δ0 at t2 (where t1 and t2 are sufficiently far apart)
is given by the probability p(δ0) = β.

The third condition that is sufficient to guarantee the equality of
the Boltzmannian equilibrium value and phase averages is given by
the Average Equivalence Theorem (Werndl and Frigg 2017).16 The
conditions of this theorem are referred to as the ‘Average Equivalence
Conditions’.

Average Equivalence Theorem (AET). Assume that
a model is composed of N ≥ 1 components. That is, the
state x ∈ X is given by the N coordinates x = (x1,
. . . , xN ); X = X1 × X2 . . . × XN , where Xi = Xoc for
all i, 1 ≤ i ≤ N (Xoc is the one-component space). Let

16In Werndl and Frigg’s (2017) paper, the theorem was referred to as ‘equilibrium
equivalence theorem’. This name turned out to be potentially misleading because
the theorem concerns the largest macro-region and not the a Boltzmannian equi-
librium per se. For this reason, we now use the label ‘average equivalence theorem’.
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μX be the product measure μX1 × μX2 · · · × μXN , where
μXi = μXoc is the measure on Xoc.17 Suppose that the
macro-variable K is the sum of the one-component vari-
able, i.e. K(x) =

∑N
i=1 κ(xi) (the assumptions made here

is that all sums of possible values of the one-component
variable are possible values of the macro-variable). Then it
follows that the value corresponding to the largest macro-
region as well as the value obtained by Gibbsian phase
averaging is N

k (κ1 + κ2 + · · ·κN ).

For a proof of the theorem, see Werndl and Frigg (2017). Note that if
the theorem is used to make claims about Boltzmannian equilibrium
(as we do here), dynamical assumptions have to come in. Assum-
ing now that a Boltzmannian equilibrium exists, it follows from the
dominance/prevalence theorems that the Boltzmannian equilibrium
value is equal to the value of the largest macro-region. From the
Average Equivalence Theorem, it then follows that this Boltzman-
nian equilibrium value is equal to the Gibbsian phase average.

The most important assumptions of the theorem are (i) that the
macro-variable is a sum of variables on the one-component space
(where all sums of possible values of the one-component variable are
possible values of the macro-variable); (ii) that the macro-variable
on the one-component space corresponds to a partition with cells of
equal probability; and (iii) that the measure on the state space is
the product measure of the measure on the one-component space.
To some extent, these assumptions are restrictive; still, a number of
standard applications of SM fall within the scope of the theorem.
One instance of the AET is the baker’s gas; another instance of the
AET is the Kac ring with the standard macro-state structure; and
yet another example is the ideal gas with N particles (see Werndl
and Frigg (2019) for details).18

The fourth sufficient condition to guarantee the equality of the
Boltzmannian equilibrium value and the Gibbisan phase average is

17It is assumed here that N is a multiple of k, i.e. N = k ∗ s for some s ∈ N.
18One might think that there is a similarity between AET and the weak law of
large numbers (LLN), which states that given independent and identially dis-
tributed random variables (which we consider in the AET theorem) for any ε > 0
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given by the Cancelling Out Theorem (the conditions of this theorem
will be refereed to as the ‘Cancelling Out Conditions’). Let us first
state the theorem (for the proof, see Werndl and Frigg, 2019):

Cancelling Out Theorem (COT). Consider a deter-
ministic model with Boltzmannian equilibrium macro-state
Mequ with equilibrium value Vequ and other macro-states
M1, . . . ,Mq, q ∈ N, with corresponding macro-values
VM1 , . . . , VMq . Further, suppose that for any macro-state
Mi �= Mequ there is a macro-state Mj such that
(i) μX(XMi) = μX(XMj ) and (ii) VMi + VMj = 2VMequ .
Then, the Boltzmannian equilibrium value as well as the
value obtained by phase averaging is Vequ.

Intuitively, the theorem states the following: if the state space
is divided up in such a way that next to the largest macro-
region (corresponding to the Boltzmannian equilibrium), there are
always two macro-states of equal measure such that their average
equals the Boltzmannian equilibrium value, then it follows that the
Boltzmannian equilibrium value equals the Gibbsian phase aver-
age, and GSM can serve as an effective theory. Needless to say, the
assumptions of the theorem are to some extent restrictive because
it requires the macro-state structure to be of a special kind. Still, a
number of standard cases in SM such as the six-vertex model with the
polarisation macro-variable for sufficiently high temperatures or the

(cf. Meester, 2003, Section 4.1):

μ

„j
x :

˛̨
˛̨
PN

i=1 κ(xi)

N
− (κ1 + κ2 + · · ·κN )

k

˛̨
˛̨ < ε

ff«
≥ 1 − σ2

ε2N
. (16.10)

This similarity is superficial, and the theorems are different. First, the LLN does
not say whether the values of the extensive macro-variables we consider in the
AET,

PN
i=1 κ(xi), are close to N(κ1 + κ2 + · · ·κN )/k. All one obtains from the

LLN is that their values are within Nε, but Nε can be very large. Second, AET
and LLN are results about different macro-variables. AET is a result about the
macro-variable

PN
i=1 κ(xi) or, if it is divided by N , about

PN
i=1 κ(xi)/N . By

contrast, LLN is a statement about the probability of states that are close or
equal to (κ1 + · · · + kk)/k. Hence, it can tell us something about the different
macro-variables that are defined by assigning the same macro-value to all states
that are close or equal to (κ1 + · · · + kk)/k.
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Ising model with the magnetisation macro-variable for sufficiently
high temperatures fall under the scope of the theorem (cf. Cipra,
1987; Lavis and Bell, 1999, Chapter 3).

As noted in Section 16.2, there are alternative interpretations of
GSM that do not include AP. One such interpretation is that the
theoretical core of GSM contains only ρ, while Equation (16.4), the
mechanical averaging equation, has the status of a pragmatic rule
that is adopted only when it provides correct results. When this equa-
tion fails, GSM is simply silent about the correct equilibrium values.
This move immunises GSM against arriving at calculations that dis-
agree with the calculations of BSM, but it does so at the cost of
further restricting the scope of GSM. This is not per se objection-
able, but it changes nothing fundamentally in our argument. On this
alternative interpretation, GSM is still an effective theory with a lim-
ited range of applicability (and the limits are identical to the limits
of the standard interpretation). The only difference is that in cases in
which there would be disagreement, GSM is now seen not as giving
wrong results but rather as providing no results at all.19

16.6. Conclusion

We argued that GSM is an effective theory while BSM is a funda-
mental theory. This clarifies the relation between the two approaches.
We presented an account of effective theories and showed that GSM
fits the relevant criteria. The range of application of effective theo-
ries is limited, which raises the question under what circumstances
the calculations of GSM are correct. We presented four conditions
under which this happens; these are individually sufficient but not
necessary. This means that other, yet unknown, conditions could

19Furthermore, as argued by Frigg and Werndl (2019), there is no single reason-
able interpretation of Gibbs that can make sense of all the successful applications
of GSM. Reasonable interpretations of GSM such as the fluctuation account can
always only explain some of the applications of GSM, that there is no single rea-
sonable interpretation of Gibbs that can account for all successful applications of
GSM further strenghtens the view that GSM is an effective theory.
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exist. It is, however, an open question whether such conditions do
exist and whether there is a complete list of such conditions.

Classifying GSM as an effective theory has implications for foun-
dational debates. It implies that GSM does not address foundational
questions and that such questions should not be discussed in that
theory. Asking whether GSM provides a correct fundamental descrip-
tion of the world, or, if the answer to this question is negative, try-
ing to revise GSM so that it does provide such a description, is
a mistaken endeavour. Effective theories do not offer fundamental
descriptions; they are calculatory devices of instrumental value; no
more and no less.

There have been (and still are) sustained attempts to turn GSM
into a fundamental theory. Probably the most important programme
of that kind aims to extend GSM to non-equilibrium processes. It
is common to characterise the approach to equilibrium as a process
of increasing entropy. This means that if a system is prepared in a
non-equilibrium macro-state of low entropy, then, as soon as the con-
straints are lifted and the system evolves freely, the entropy should
increase until it reaches a maximum. This does not happen in GSM
because the Gibbs entropy, defined as

∫
X ρ ln(ρ)dx, is a constant of

motion. This undermines attempts to describe the approach to equi-
librium as a process of increasing entropy. This problem is the start-
ing point of a research programme that aims to revise GSM in such
a way that the Gibbs entropy increases over time. Coarse-graining
combined with a mixing dynamics, interventionism, and attempts to
redefine Gibbsian equilibrium in way that avoids reference to sta-
tionary distributions are but the most prominent proposals in that
programme.20

For those who regard GSM as an effective theory, this research
programme started on the wrong foot. If the Gibbs entropy does
not change over time, we should conclude that GSM does not offer
an effective description of non-equilibrium processes and limit its
range of applicability to equilibrium situations, rather than trying

20For a review and discussion of these proposals see Frigg (2008), Sklar (1993)
and Uffink (2007).
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to turn GSM into a correct description of non-equilibrium processes.
Such a programme would be justified only if it turned GSM into an
effective theory of non-equilibrium processes. But, at least so far,
this does not seem to have happened. Non-equilibrium versions of
GSM are not effective non-equilibrium theories. Not only do they not
offer manageable algorithms to compute outcomes (thereby violating
Wells’ first criterion); they often also are not empirically adequate
(spin echo experiments are a case in point).

Foundational questions concerning GSM remain important when
they concern the empirical adequacy of the theory or its connection
to the fundamental theory, BSM. One such question is the one we
addressed in the previous section, namely under what circumstances
Gibbsian and Boltzmannian equilibrium values coincide. Another
is the problem of the justification of maximum entropy methods.
The choice of the outcome distribution is often guided by maximum
entropy considerations, and there is a legitimate question why these
considerations work, and why they deliver distributions that provide
correct equilibrium values; see Uffink (1995, 1996) for a discussion.
But these are questions concerning the instrumental efficiency of the
theory and are not aimed at turning GSM into a fundamental theory.
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Hitchcock, eds. The Oxford Handbook of Probability and Philosophy,
Oxford University Press, 573–600.

Pathria, Raj K., Paul D. Beale (2011) Statistical Mechanics, Elsevier, Oxford.
Sklar, Lawrence. (1993) Physics and Chance. Philosophical Issues in the Founda-

tions of Statistical Mechanics, Cambridge University Press, Cambridge.
Tolman, Richard C. (1938) The Principles of Statistical Mechanics, Dover Publi-

cations, Mineola, NY.
Uffink, Jos. (1995) Can the maximum entropy principle be explained as a consis-

tency requirement? Studies in History and Philosophy of Modern Physics,
26(3), 223–261.
. (1996) The constraint rule of the maximum entropy principle, Studies in

History and Philosophy of Modern Physics 27(1), 47–79.
. (2007) Compendium of the Foundations of Classical Statistical Physics,

in Butterfield and Earman, eds. Philosophy of Physics, Amsterdam: North
Holland, 923–1047.

Volchan, Sérgio B. (2007) Probability as Typicality, Studies in History and Phi-
losophy of Modern Physics, 38, 801–814

Vranas, Peter B. (1998) Epsilon-ergodicity and the success of equilibrium statis-
tical mechanics. Philosophy of Science, 65, 688–708.

Wallace, David. (2015) The quantitative content of statistical mechanics. Studies
in History and Philosophy of Modern Physics, 52, 285–293.

Wang, Genmiao, Edie Sevick, Emil Mittag, Debra, J., Searles, Denis J. Evans.
(2002) Experimental demonstration of violations of the second law of ther-
modynamics for small systems and short time scales, in Physical Review
Letters, 89, 050601.

Wells, James D. (2012) Effective Theories in Physics. From Planetary Orbits to
Elementary Particle Masses. Springer, Heidelberg and New York.

Werndl, Charlotte, Roman Frigg. (2015) Reconceptionalising equilibrium in
Boltzmannian statistical mechanics, Studies in History and Philosophy of
Modern Physics, 49, 19–31.
. (2017a) Boltzmannian Equilibrium in Stochastic Systems, in Massimi

and Romeijn, eds. Proceedings of the EPSA15 Conference. Berlin and New
York: Springer, 243–254.
. (2017b) Mind the gap: Boltzmannian versus Gibbsian equilibrium, Phi-

losophy of Science 84(5), 2017, 1289–1302.
. (2019a) When Does Gibbsian Phase Averaging Work? Manuscript.



March 24, 2020 14:50 Statistical Mechanics and Scientific Explanation 9in x 6in b3714-ch16 page 646

646 C. Werndl & R. Frigg

. (2019b) When Does a Boltzmannian Equilibrium Exist?, forthcoming in
Bendingham, Maroney, and Timpson, eds. Quantum Foundations of Sta-
tistical Mechanics, Oxford University Press.
. (2019c) Ehrenfest and Ehrenfest-Afanassjewa on Why Boltzmannian

and Gibbsian Calculations Agree, forthcoming in Uffink, Valente, Werndl
and Zuchowski, eds. Tatjana Afanjassewa and Her Legacy: Philosophi-
cal Insights from the Work of an Original Physicist and Mathematician,
Springer, Berlin.

Wilhelm, Isaac. (fortcoming) Typical, forthcoming in The British Journal for
Philosophy of Science.




