
Chapter 20
Boltzmannian Equilibrium in Stochastic
Systems

Charlotte Werndl and Roman Frigg

Abstract Equilibrium is a central concept of statistical mechanics. In previous
work we introduced the notions of a Boltzmannian ˛-"-equilibrium and a Boltzman-
nian � -"-equilibrium (Werndl and Frigg, Stud Hist Philos Mod Phys 44:470–479,
2015a; Philos Sci 82:1224–1235, 2015b). This was done in a deterministic context.
We now consider systems with a stochastic micro-dynamics and transfer these
notions from the deterministic to the stochastic context. We then prove stochastic
equivalents of the Dominance Theorem and the Prevalence Theorem. This estab-
lishes that also in stochastic systems equilibrium macro-regions are large in a
requisite sense.

Keywords Statistical mechanics • Stochastic processes • Boltzmann equilibrium

20.1 Introduction

Equilibrium is a central concept of statistical mechanics. In Boltzmannian statistical
mechanics (BSM) equilibrium is standardly associated with the largest macro-
region, where macro-regions are parts of the accessible phase space consisting of
micro-states that are the supervenience base for the same macro-state. In two recent
papers we argue that the standard picture lacks a foundation and should be replaced
by an alternative approach (Werndl and Frigg 2015a, b). We developed this approach
in detail under the assumption that the underlying micro-dynamics is deterministic.
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244 C. Werndl and R. Frigg

In this paper we give up the assumption of determinism and generalise our approach
to systems with a stochastic micro-dynamics.

In Sect. 20.2 we introduce the main pillars of our programme. In Sect. 20.3 we
present stochastic systems. In Sect. 20.4 we carry over our key concepts from the
deterministic to the stochastic context and formulate the main theorems, which we
prove in the Appendix. In Sect. 20.5 we illustrate our claims with the example of
the lattice gas, an important and widely used model in physics. In Sect. 20.6 we
summarise our results and add some concluding remarks.

20.2 Boltzmannian Equilibrium Rethought

In this section we briefly present the new definition of equilibrium we proposed
in previous work (Werndl and Frigg 2015a, b). Consider a system consisting of
n particles in an isolated and bounded container. The system’s micro-state is a
point x in its 6n-dimensional state space 
 . The system’s dynamics is given by a
deterministic time evolution �t, where �t.x/ is the state into which x 2 
 evolves
after t time steps. The system’s energy is preserved and so the system’s motion
is confined to the energy hypersurface 
E. The hypersurface is equipped with a
sigma algebra †E and a normalised measure �E which is invariant under �t. Taken
together these elements constitute the measure-preserving deterministic dynamical
system .
E; †E; �E; �t/.

From a macroscopic point of view the system can be characterised by a set
fv1; : : : ; vkg of macro-variables (k 2 N). The vi are functions on 
E that assume
values in the range Vi, and capital letters Vi denote the values of vi. A particular
set of values fV1; : : : ;Vkg defines a macro-state MV1;:::;Vk . A set of macro-states
is complete iff (if and only if) it contains all states a system can be in. In
Boltzmannian statistical mechanics macro-states supervene on micro-states and
hence every macro-state M is associated with a macro-region 
M consisting of all
x 2 
E for which the system is in M. For a complete set of macro-states the 
M

form a partition of 
E.
The equilibrium macro-state is Meq and its macro-region is 
Meq . A crucial aspect

of the standard presentation of BSM is that 
Meq is the largest macro-region. The
notion of the ‘largest macro-region’ can be interpreted in two ways. The first takes
‘largest’ to mean that the equilibrium macro-region takes up a large part of 
E.
We say that 
Meq is ˇ-dominant iff �E.
Meq/ � ˇ for a particular ˇ 2 . 1

2
; 1�. If


Meq is ˇ-dominant, then it is in fact also ˇ0-dominant for all ˇ0 in .1=2; ˇ/. The
second reading takes ‘largest’ to mean ‘larger than any other macro-region’. We say
that 
Meq is ı-prevalent iff minM¤Meq Œ�E.
Meq/ � �E.
M/� � ı for a particular real
number ı > 0. This implies that if 
Meq is ı-prevalent, then it is also ı0-prevalent
for all ı0 in .0; ı/. We do not adjudicate between these different definitions - either
meaning of ‘large’ can be used to define equilibrium. It ought to be pointed out,
however, that they are not equivalent: whenever an equilibrium macro-region is ˇ-
dominant, there exists a range of values for ı so that the macro-region is also ı-
prevalent for these values, but the converse fails.
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20 Boltzmannian Equilibrium in Stochastic Systems 245

The question now is: why is the equilibrium state ˇ-dominant or ı-prevalent? A
justification ought to be as close as possible to thermodynamics. In thermodynamics
a system is in equilibrium when change has come to a halt and all thermodynamic
variables assume constant values (cf. Reiss 1996, 3). This would suggest a definition
of equilibrium according to which every initial condition lies on a trajectory for
which fv1; : : : ; vkg eventually assume constant values. Yet this is unattainable for
two reasons. First, the values of the vi will never cease to fluctuate due to Poincaré
recurrence. This, however, is no cause for concern. Experimental results show that
systems exhibit fluctuations away from equilibrium (Wang et al. 2002), and hence
the strict thermodynamic notion of equilibrium is actually unphysical. Second, in
dynamical systems we cannot expect every initial condition to approach equilibrium
(see, for instance, Callender 2001). For these reasons we define equilibrium as the
macro-state in which trajectories starting in most initial conditions spend most of
their time.

To make this idea precise, we introduce the long-run fraction of time a system
spends in a region A 2 †E when the system starts in micro-state x at time t D 0:

LFA.x/ D lim
t!1

1

t

Z t

0

1A.�� .x//d� for continuous time; i:e: t 2 R; (20.1)

LFA.x/ D lim
t!1

1

t

t�1X

�D0

1A.�� .x// for discrete time; i:e: t 2 Z;

where 1A.x/ is the characteristic function of A, i.e. 1A.x/ D 1 for x 2 A and 0
otherwise.

The notion ‘most of their time’ is beset with the same ambiguity as the ‘largest
macro-state’. On the first reading, ‘most of the time’ means more than half of the
total time. This leads to the following formal definition of equilibrium:

BSM ˛-"-Equilibrium. Consider an isolated system S whose macro-states are specified in
terms of the macro-variables fv1; : : : ; vkg and which, at the micro level, is a measure-
preserving deterministic dynamical system .
E; †E; �E; �t/. Let ˛ be a real number in
.0:5; 1�, and let 1 � " � 0 be a very small real number. If there is a macro-state MV�

1 ;:::;V
�

k

satisfying the following condition, then it is the ˛-"-equilibrium state of S: there exists a set
Y � 
E such that �E.Y/ � 1� ", and all initial states x 2 Y satisfy

LF
M
V�

1 ;:::;V
�

l

.x/ � ˛: (20.2)

We then write M˛-"-eq WD MV�

1 ;:::;V
�

k
.

An obvious question concerns the value of ˛. Often the assumption seems to be
that ˛ is close to one. This is reasonable but not the only possible choice. For our
purposes nothing hangs on a particular choice of ˛ and so we leave it open what the
best choice would be.

On the second reading, ‘most of the time’ means that the system spends more
time in the equilibrium macro-state than in any other macro-state. This idea can be
rendered precise as follows:

r.p.frigg@lse.ac.uk



246 C. Werndl and R. Frigg

BSM �-"-Equilibrium. Consider an isolated system S whose macro-states are specified in
terms of the macro-variables fv1; : : : ; vkg and which, at the micro level, is a measure-
preserving deterministic dynamical system .
E; †E; �E; �t/. Let � be a real number in .0; 1�
and let 1 � " � 0 be a very small real number so that � > ". If there is a macro-state
MV�

1 ;:::;V
�

l
satisfying the following condition, then it is the �-"-equilibrium state of S: There

exists a set Y � 
E such that �E.Y/ � 1� " and for all initial conditions x 2 Y:

LF
M
V�

1 ;:::;V
�

l

.x/ � LF
M.x/C � (20.3)

for all macro-states M ¤ MV�

1 ;:::;V
�

l
. We then write M�-"-eq WD MV�

1 ;:::;V
�

k
.

As above, nothing in what we say about equilibrium depends on the particular value
of the parameter � and so we leave it open what the best choice would be.

We contend that these two definitions provide the relevant notions of equilibrium
in BSM. But the definitions remain silent about the size of equilibrium macro-
regions, and they do not in any obvious way imply anything about seize. These
regions being extremely small would be compatible with the definitions. That
these macro-regions have the right size is a result established in the following two
theorems:

Deterministic Dominance Theorem: If M˛-"-eq is an ˛-"-equilibrium of system S, then
�E.
M˛-"-eq / � ˇ for ˇ D ˛.1� "/.1

Deterministic Prevalence Theorem: If M�-"-eq is a �-"-equilibrium of system S, then
�E.
M�-"-eq / � �E.
M/C � � " for all macro-states M ¤ M�-"-eq.

Both theorems are completely general in that no dynamical assumptions are
made.2 Thus the theorems also apply to strongly interacting systems. It is worth
highlighting that the theorems make the conditional claim that if an equilibrium
exits, then it is large in the relevant sense. Some systems have equilibria and for
these the theorem holds. For instance the baker’s gas (a gas consisting of N copies of
the baker’s transformation) has an equilibrium in the requisite sense and the relevant
macro-region is large (see Lavis (2005) for a discussion of the baker’s gas). Other
systems don’t have equilibria, and for these the antecedent of the conditional is not
satisfied. If, for instance, the dynamics is given by the identity function, no approach
to equilibrium takes place.

There are many systems in statistical mechanics where a stochastic dynamics
is considered. Important examples include the Ising model, the lattice gas, the
six vertex model and the eight vertex model (cf. Baxter 1982; Lavis and Bell
1999). Hence the above definitions and results do not apply to them and so the
question arises whether the results can be carried over to stochastic systems. We now
introduce stochastic systems and then show that such a generalisation is possible.

1We assume that " is small enough so that ˛.1� "/ > 1
2
.

2We assume that the dynamics is stationary, i.e. that �t does not depend on time explicitly.
This, however, is not a substantive assumption in the current context because standard systems
in statistical mechanics such as gases and crystals are stationary.

r.p.frigg@lse.ac.uk
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20.3 Stochastic Processes

In order to introduce stochastic processes, we first need to define random variables.
Intuitively, a random variable Z gives the outcome of a probabilistic experiment,
where the distribution PfZ 2 Ag specifies the probability that the outcome will be in
a certain range A. Formally, a random variable is a measurable function Z W � ! NX,
where .�;†�; �/ is a probability space and . NX; † NX/ is a measurable space. NX is
the set of possible outcomes and is therefore referred to as the outcome space. The
probability measure PfZ 2 Ag D �.Z�1.A// for all A 2 † NX is called the distribution
of Z.

A stochastic process consists of a string of the kind of probabilistic experiments
that are described by a random variable. Formally, a stochastic process fZtg, t 2 R

(continuous time) or Z (discrete time) is a family of random variables Zt, which
are defined on the same probability space .�;†�; �/ and take values in the same
measurable space . NX; † NX/ such that Z.t; !/ D Zt.!/ is jointly measurable in .t; !/.
Intuitively speaking, each ! encodes an entire possible history (past, present, and
future) of a stochastic process, and thus � is the set of all possible histories of
the stochastic process (we illustrate this idea with a simple example below). A
realisation is a possible path of the stochastic process. That is, it is a function
r! W R ! NX, r!.t/ D Z.t; !/, for ! 2 � arbitrary (cf. Doob 1953,4–46). The
difference between ! and r! is simply that while r! gives a possible path of the
stochastic process in terms of sequences of elements of NX, ! just encodes such a
possible history.

If the random variable does not depend explicitly on time (if, for instance, the
outcome does not depend on when you toss a coin), then we have a stationary
stochastic process and in what follows all the stochastic processes we will be
working with will be assumed to be stationary. Formally: A stochastic process
fZtg is stationary iff the distributions of the multi-dimensional random variable
.Zt1Ch; : : : ;ZtnCh/ is the same as the one of .Zt1 ; : : : ;Ztn/ for all t1; : : : ; tn 2 R or Z,
n 2 N, and all h 2 Z or R (ibid.).

Let us now give an example, namely the discrete stochastic process that describes
a bi-infinite series of coin tosses of a fair coin with probability pH D 1=2 (‘Heads’)
and pT D 1=2 (‘Tails’), pH[T D 1 and p; D 0. In this case NX D fH;Tg and † NX
is the power set of NX. � is the set encoding all possible histories of the stochastic
process. That is,� is defined as the set of all sequences ! D .: : : !�1!0!1 : : :/ with
!i 2 NX corresponding to one of the possible outcomes of the i-th trial in a doubly
infinite sequence of trials. †� is the � -algebra generated by the cylinder-sets

CG1:::Gn
i1:::in

Df! 2 � j!i12G1;: : :; !in2Gn;Gj 2 † NX; ij 2Z; i1<: : :< in; 1
 j
ng:

(20.4)

Since the outcomes are independent, these sets have probability N�.CG1:::Gn
i1:::in

/ WD

pG1 	 : : : 	 pGn . Let � be defined as the unique extension of N� to a measure on
†�. Finally, define Zt.!/ WD !t (the t-th coordinate of !). Then Zt.!/ gives us
the outcome of the coin toss at time t, PfZt D Hg D �.Z�1

t .fHg// D 1=2 and

r.p.frigg@lse.ac.uk



248 C. Werndl and R. Frigg

PfZt D Tg D �.Z�1
t .fTg// D 1=2 for any t. Hence fZtg is the stochastic process

describing an infinite series of tosses of a fair coin, and it is also clear that this
process is stationary.3

20.4 Equilibrium for Stochastic Processes

Let us now return to BSM as introduced in the previous section. In the context of
stochastic processes NX plays the role of 
E as giving the set of possible outcomes of
the system. Zt.!/ is the stochastic equivalent of �t.x/ in that it gives the state of the
system at time t. More specifically, the dynamics is determined by the probability
measure �, from which transition probabilities (such as PfZt D H j given that
Zt�1 D Tg) can be derived. These are the stochastic equivalent of �t.x/ because they
specify how the system evolves over time. Realisations are the stochastic equivalent
of trajectories in the deterministic case in that they describe possible evolutions of
the system. The probability measure P defined on NX is the stochastic equivalent of
�E because it gives the probability of certain outcomes. Finally, the condition of
stationarity is the stochastic analogue of the condition that �E is invariant in the
deterministic case.

The macro characterisation of the system does not change, and so we consider
again the macro-variables fv1; : : : ; vkg. The mathematical expression of superve-
nience is that the vi are functions on NX. That is, vi W NX ! Vi. As above, a particular
set of values fV1; : : : ;Vkg defines a macro-state MV1;:::;Vr , and a complete set of
macro-states contains all states as system can be in. Again, every macro-state M is
associated with a macro-region NXM consisting of all Nx 2 NX for which the system is
in M. The definitions of prevalence and dominance carry over to the current context
unchanged. That is, a macro-region NXMeq is ı-prevalent iff Pf NXMeqg > Pf NXMgCı for
some ı 2 .0; 1� for all M ¤ Meq, and NXMeq is ˇ-dominant iff Pf NXMeqg � ˇ for some
ˇ 2 . 1

2
; 1�.

The aim now is to carry over the above definitions of equilibrium from the
deterministic to the stochastic context. To this end we first have to introduce the
notion of the long-run fraction of time a realisation spends in a region A 2 † NX:

LFA.!/ D lim
t!1

1

t

Z t

0

1A.Z� .!//d� for continuous time; i:e: t 2 R; (20.5)

3Here we can also illustrate the difference between an ! and a realisation r.!/. We could, for
instance, also use ‘0’ and ‘1’ to encode the path of a stochastic process (where ‘0’ encodes the
outcome Heads and ‘1’ encodes the outcome Tails). Then � would consist of sequences such as
! D .: : : ; 0; 1; 0; 1; : : :/, but r.!/ D .: : :H;T;H;T; : : :/. More radically, we could also use a
real number ! 2 Œ0; 1� to encode a sequence of 0s and 1s (via its binary development) and thus a
sequence of outcomes of tossing a coin.

r.p.frigg@lse.ac.uk
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LFA.!/ D lim
t!1

1

t

t�1X

�D0

1A.Z� .!// for discrete time; i:e: t 2 Z: (20.6)

We are now in a position to state the stochastic definitions of equilibrium:

Stochastic ˛-"-Equilibrium. Consider an isolated system S whose macro-states are specified
in terms of the macro-variables fv1; : : : ; vkg and which, at the micro level, is a stationary
stochastic process fZtg. Let ˛ be a real number in .0:5; 1�, and let 1 � " � 0 be a very
small real number. If there is a macro-state MV�

1 ;:::;V
�

k
satisfying the following condition,

then it is the stochastic ˛-"-equilibrium state of S: There exists a set �� � � such that
�.��/ � 1� ", and for all ! 2 ��:

LFNXM
V�

1 ;:::;V
�

k

.!/ � ˛: (20.7)

We then write M˛-"-eq WD MV�

1 ;:::;V
�

k
.

The definition of the � -"-equilibrium is now straightforward:

Stochastic �-"-Equilibrium. Consider an isolated system S whose macro-states are specified
in terms of the macro-variables fv1; : : : ; vkg and which, at the micro level, is a stationary
stochastic process fZtg. Let � be a real number in .0; 1�, and let 1 � " � 0 be a very
small real number so that " < � . If there is a macro-state MV�

1 ;:::;V
�

k
satisfying the following

condition, then it is the stochastic ˛-"-equilibrium state of S: There exists a set �� � �

such that �.��/ � 1� ", and all ! 2 �� satisfy

LFNXM
V�

1 ;:::;V
�

k

.!/ � LFNXM
.!/C � (20.8)

for all M ¤ MV�

1 ;:::;V
�

k
. We then write M�-"-eq WD MV�

1 ;:::;V
�

k
.

The core result of this paper is that the two central theorems of the determin-
istic case, the Dominance Theorem and the Prevalence Theorem, have stochastic
analogues. We now state the theorems and give the proof in the Appendix.

Stochastic Dominance Theorem: If M˛-"-eq is a stochastic ˛-"-equilibrium of system S, then
Pf NXM˛-"-eq g � ˇ for ˇ D ˛.1� "/.4

Stochastic Prevalence Theorem: If M�-"-eq is a stochastic �-"-equilibrium of system S, then
Pf NXM"-eq g � Pf NXMg C � � " for all macro-states M with M ¤ M�-"-eq.

As in the deterministic case, both theorems are completely general in that no
dynamical assumptions are made and hence the theorems apply to stochastic process
with any dynamics.5 As in the deterministic case it is worth noting that the theorems
make the conditional claim that if an equilibrium exits, then it is large in the relevant
sense. There are processes that do not have an equilibrium. For instance, consider
the stochastic process of throwing a fair die (with six sides). Suppose that the
macro-variable of concern is whether the die shows an even number (2, 4, 6) or

4We assume that " is small enough so that ˛.1� "/ > 1
2
.

5We assume that the dynamics is stationary, but, as in the deterministic case, this is not a substantive
assumption because standard stochastic systems in statistical mechanics are stationary.
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an odd number (1, 3, 5). Then there will be no equilibrium because for almost any
realisation half of the time the dice will show an even number and half of the time
it will show an odd number.

20.5 Example: The Lattice Gas

We now illustrate the definitions and theorems of the previous section with the
lattice gas. The lattice gas is a popular model not only of gases (as its name would
suggest), but in fact also of liquids and solids.6 The lattice gas models a fluid
in the sense that flows are represented by particles moving from site to site, and
because the system is in contact with an energy and particle reservoir, particles can
also be created and annihilated. More specifically, consider a lattice with N 2 N

sites. Each lattice site can either be occupied by a particle or be empty. This is
formalised by associating with every lattice site i a variable si, which takes the
value 1 if the site is occupied and 0 if the site is empty. Thus the micro-state of the
lattice is a vector s D .s1; : : : ; sN/, specifying which sites are occupied and which
ones are empty. Hence the system’s NX consists of the 2N possible arrangements of
different numbers of particles on the N sites, and † NX is the power set of X. Now the
elements of � encode the past, present and future of the stochastic process in all
its details (for the lattice gas discrete time steps are considered). That is, � consists
of all bi-infinite sequences ! D .: : : !�1!0!1 : : :/ where the i-th coordinate !i

is an arbitrary vector s. †� is the � -algebra generated by cylinder sets that are
described in Equation 20.11 if we replace the Gs by Bs. Finally, Zt.!/ WD !t (the
t-th coordinate of !).

The probability measure � depends on the exact stochastic dynamics of the
system. Many different kinds of stationary stochastic dynamics are considered for
the lattice gas model (cf. Baxter 1982; Cipra 1987). At this point it is not necessary
to commit to any specific stochastic dynamics. It suffices to say that a stochastic
dynamics will determine the measure assigned to the cylinder sets N�.CB1:::Bn

i1:::in
/ and

its unique extension �. What we need to mention, however, is that the potential
energy and the grand-canonical probability distribution will constrain the dynamics.
The simplest still somewhat realistic potential is the so-called square-well potential,
where only nearest neighbour interactions are taken into account. The underlying
idea is that there cannot be two particles on the same site, that particles are attracted
when they are close to each other and that no interaction takes place when they are
far apart.

�.i; j/ D

8
<

:

1 if i D j
�� if i; j are nearest neighbours
0 otherwise

9
=

;
; (20.9)

6See Baxter (1982) and Cipra (1987) for more details about the lattice gas.
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where i and j denote sites of the lattice and � > 0. The total potential energy of the
system is given by E.s/ D

P
i;j �.i; j/sisj, where the sum is over all pairs of sites on

the lattice (with i ¤ j).
The probability measure of a set of micro-states A is given by the grand-canonical

probability distribution PfAg. This distribution depends on the effective chemical
potential �c (one can think of the chemical potential as a measure for how accepting
the system is of new particles, or for how much work one has to do to add a new
particle to the system):

P
s2A expŒ �4kT .

P
all i;j.2si � 1/.2sj � 1/C .2�c C q�/

P
all i.2si � 1/C N. 12q� C 2�c//�

P
all s expŒ �4kT .

P
all i;j.2si � 1/.2sj � 1/C .2�c C q�/

P
all i.2si � 1/C N. 12q� C 2�c//�

;

(20.10)

where k is the Boltzmann constant, T is the temperature and q is the number of
nearest-neighbours. For any stochastic dynamics that satisfies the constraints that the
potential energy is given by Equation (20.9) and that the probabilities are specified
by the grand-canonical partition function, fZtg is a stochastic process describing the
lattice gas.

The macro-states usually considered are defined by the average particle density
per site over the entire system: MLG

j D j=N where j denotes the total number of
molecules s1 C s2 : : :C sN . The macro-regions NXMLG

j
are defined as the set of micro-

states for which the system is in macro-state MLG
j .

The behaviour of the lattice gas depends on the values of the various parameters.
For the purpose of illustrating our ideas, we will consider two kinds of behaviour
(corresponding to ranges of parameter values). First, consider a sufficiently large �c

(which corresponds to a situation when the system readily accepts new particles).
In this case, under the usual stochastic dynamics considered, the system will spend
more time in the macro-state in which all sites occupied than in any other macro-
state, i.e. in MLG

N , for almost all initial states (in a measure-theoretic sense) (cf.
Baxter 1982). For this reason MLG

N is a � -0 equilibrium. Thus, by the Stochastic
Prevalence Theorem, MLG

N is � -prevalent.7

Second consider a sufficiently small negative-valued �c (in which case the
system tends to annihilate particles). Then, under the usual stochastic dynamics
considered, the system will spend more time in the macro-state in which all sites
empty than in any other macro-state, i.e. in MLG

0 , for almost all initial states
(cf. Baxter 1982). Therefore, MLG

0 is a � -0-equilibrium. Thus, by the Stochastic
Prevalence Theorem, MLG

N is � -prevalent.8

To conclude, the lattice gas represents an important physical system that has
equilibria in our sense. Let us end with a few remarks on why this system is

7Note that it is also clear from Equation (20.10) that for sufficiently large �c, MLG
N corresponds to

the largest macro-region.
8Again, this is clear from Equation (20.10).
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physically important. First, it provides a good model of condensation and the liquid-
gas transition.9 A theory of condensation was developed based on the lattice model,
which was shown to qualitatively reproduce the main features of condensation and
was empirically confirmed for many cases (Kierlik et al. 2002; Yang and Lee 1952).
To give an example, de Ribaupierre and Manchester (1974) found that the lattice
gas provides a satisfactory model of condensation for a hydrogen in palladium
system. Pan et al. (1998) found that the lattice gas gives a fair description of the
liquid-gas transition in excited nuclear systems formed as a result of a heavy ion
collisions. Finally, the lattice gas also models melting and freezing phenomena well
(see Kikuchi and Cahn 1980). For instance, Clarke et al. (1979) found that the lattice
gas model provides a good description of melting for graphite intercalated with
caesium.

20.6 Conclusion

We presented stochastic formulations of the notions of an ˛-"-equilibrium and a
� -"-equilibrium, and we have formulated and proven stochastic equivalents of the
Dominance Theorem and the Prevalence Theorem. This completes the transfer of
the basic notions of our framework from the deterministic to the stochastic context.
There is, however, an important disanalogy between the two contexts as far as the
existence of an equilibrium state is concerned. In the deterministic context we were
able to prove an existence theorem (Werndl and Frigg 2015a, pp. 26–29). There is
no straightforward generalisation of this theorem to the stochastic context. This is
because the conditions that need to hold for an equilibrium to exist in the existence
theorem are conditions on the ergodic components. However, stochastic processes
do not have such ergodic components. It is true that the deterministic representation
of a stochastic process (cf. the Appendix for a definition) has ergodic components.
However, these are components of � and not of NX, and an existence theorem would
need to be about NX. Thus, as far as we see, the ergodic components of � are not
useful to characterise the circumstances under which equilibria exist for stochastic
processes. Hence there is an open question about when a stochastic equilibrium
exists.

9Mathematically speaking, the lattice gas is equivalent to the Ising model. The Ising model is one
of the best developed and most widely studied models in physics and is discussed in nearly every
modern textbook on statistical mechanics. In particular, the lattice gas on a square lattice with
�C D ��=8 is equivalent to the two-dimensional Ising model with no external field, which is
famous for being one of the very few exactly solved models that display phase transitions (Baxter
1982).
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Appendix

A.1 Proof of the Stochastic Dominance Theorem

First of all, let us show that a stationary stochastic process fZtg can be represented
by a measure-preserving deterministic system .X; †X; �X;Tt/. Let X be the set of all
possible realisations, i.e., functions x.�/ from R or Z to NX. Let †X be the � -algebra
generated by the cylinder-sets

CA1:::An
i1:::in

Dfx2X j x.i1/2A1; : : : ; x.in/2An;Aj 2† NX; ij 2R or Z; i1< : : : <in; 1
 j
 ng:

(20.11)
Let �X be the unique probability measure arising by assigning to each CA1:::An

i1:::in
the

probability PfZi1 2 A1; : : : ;Zin 2 Ang. The evolution functions shift a realisation t
times to the left, i.e., Tt.x.�// D x.� C t/. The Tt are invariant under the dynamics
because fZtg is stationary. .X; †X; �X;Tt/ is a measure-preserving deterministic
system called the deterministic representation (cf. Doob 1953, 621–622; Werndl
2009, 2011).

Let W D fx.�/ 2 X j x.�/ D Z� .!/ for all � for a ! 2 ��g. Note that �X.W/ �

1� ". Consider first the case of an ˛-"-equilibrium M˛-"-eq. Then it follows that for
all x 2 W:

LFXQM˛-"-eq
.x/ � ˛; (20.12)

where QM˛-"-eq D fx 2 X j x.0/ 2 NXM˛-"-eqg.
Hence QM˛-"-eq is an ˛-"-equilibrium of .X; †X; �X;Tt/. It follows from the

(deterministic) Dominance Theorem (Werndl and Frigg 2015a) that �X.QM˛-"-eq/ >

˛.1 � "/, which immediately implies that PfM˛-"-eqg > ˛.1 � "/.

A.2 Proof of the Stochastic Prevalence Theorem

The proof proceeds in the same fashion as the previous one. That is, consider
again the measure-preserving deterministic system .X; †X; �X;Tt/ that represents
the stationary stochastic process fZtg. Suppose that M�-"-eq is an � -"-equilibrium.

As before, let W D fx.�/ 2 X j x.�/ D Z� .!/ for all � for a ! 2 ��g. Note that
�X.W/ � 1 � ".

Then for all x 2 W and all M ¤ M�-"-eq it holds that

LFXQM�-"-eq
.x/ � LFXQM

C � � "; (20.13)

where QM�-"-eq D fx 2 X j x.0/ 2 NXM�-"-eqg and QM D fx 2 X j x.0/ 2 NXMg. Hence
QM�-"-eq is an � -"-equilibrium of .X; †X; �X;Tt/.
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It follows from the (deterministic) Prevalence Theorem (cf. Werndl and Frigg
2015a) that �X.QM�-"-eq/ � �X.QM/C � � " for all M ¤ M�-"-eq. This immediately
implies that PfM�-"-eqg � PfMg C � � " for all M ¤ M�-"-eq.
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