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The United Kingdom Climate Impacts Program’s UKCP09 project makes high-resolution
forecasts of climate during the twenty-first century using state of the art global climate
models. The aim of this article is to introduce and analyze the methodology used and then
urge some caution. Given the acknowledged systematic errors in all current climate mod-
els, treating model outputs as decision-relevant probabilistic forecasts can be seriously
misleading. This casts doubt on our ability, today, to make trustworthy, high-resolution pre-
dictions out to the end of this century.

1. Introduction. There is now a widespread consensus that global warming
is real and in large part due to human activities.1 But knowing that the cli-
mate is getting warmer is of limited use in designing detailed adaptation
strategies.2 The impact of climate change on humans occurs at a local scale,
and so ideally we would like to know what changes we have to expect in our
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1. The existence of a widespread consensus is documented in Oreskes ð2007Þ; the
evidence for the warming being anthropogenic is documented in the last IPCC Report.
Throughout, “IPCC” refers to Solomon, Qin, and Manning ð2007Þ.
2. It may well be enough for mitigation: knowing roughly what is likely to happen may
be reason enough not to go there.
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immediate environment; reliable answers would greatly aid decision makers
ðOreskes et al. 2010; Smith and Stern 2011; Sexton et al. 2012; Tang and
Dessai 2012Þ.

The United Kingdom Climate Impacts Program’s UKCP09 project aims
to answer exactly such questions by making high-resolution forecasts of
twenty-first-century climate.3 It generates its predictions using state-of-the-
art global climate models. The Intergovernmental Panel on Climate Change
ðIPCCÞ has confidence that these models have some skill at continental
scales and above. This leaves open the question whether decision-relevant
high-resolution predictions can be constructed with today’s models.

The aim of this article is to introduce and analyze the methodology used
by UKCP09 and then urge some caution. Given the acknowledged system-
atic errors in all current climate models, treating model outputs as the basis
for decision-relevant probabilistic forecasts can be seriously misleading
ðStainforth et al. 2007Þ. This casts doubt on our ability, today, to make trust-
worthy, high-resolution predictions out to the end of this century.4 Here we
introduce the aims of UKCP09 ðsec. 2Þ, outline the method used to generate
predictions ðsec. 3Þ, discuss the project’s handling of structural model error
ðsec. 4Þ, argue that crucial assumptions are untenable ðsec. 5Þ, and then draw
some conclusions ðsec. 6Þ.

2. UKCP: Aims and Results. The declared aim of UKCP09 is to provide
decision-relevant forecasts on which industry and policy makers can base
their future plans:

To adapt effectively, planners and decision-makers need as much good in-
formation as possible on how climate will evolve, and supplying this is the
aim of . . . UKCP09. They are one part of a UK government programme
of work to put in place a new statutory framework on, and provide practi-
cal support for, adaptation.

3. “UKCP09” stands for “United Kingdom Climate Projections 2009,” where “2009”
indicates that it was launched for public use in 2009. UKCP09 is documented in the
Briefing Report ðJenkins et al. 2009Þ, the Science Report ðMurphy et al. 2010Þ, and two
recent papers, Sexton et al. ð2012Þ and Sexton and Murphy ð2012Þ. The full set of
predictions is at http://ukclimateprojections.defra.gov.uk/.

4. In this article we use the word ‘trustworthy’ to denote probability forecasts that one
might rationally employ for decision-making purposes using probability theory in the
standard way. Such probability forecasts are expected to be robust and reliable, the kind
a good Bayesian wouldmake.Wewish to avoid the kind of analysis that inspired Rubin’s
remark that “a good Bayesian does better than a non-Bayesian, but a bad Bayesian gets
clobbered” ðcited in Good 2009, 139Þ. There may be many justifiable and interesting
scientific reasons to construct probability forecasts; our criticism of them in this article is
only in regard to their direct use in decision support ðas, e.g., illustrated in the worked
examples of UKCP09Þ.
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The projections have been designed as input to the difficult choices that
planners and other decision-makers will need to make, in sectors such as
transport, healthcare, water-resources and coastal defences, to ensure the
UK is adapting well to the changes in climate that have already begun and
are likely to grow in future. ðJenkins et al. 2009, 9Þ

In a system as complex as the world’s climate, it is absurd to produce point
forecasts ði.e., forecasts saying that a particular event will happen at a particular
time with certaintyÞ. UKCP09 produces what they dub Bayesian probability
forecasts, which “assign a probability to different possible climate change out-
comes recognizing that . . . giving a range of possible climate change outcomes
is better, and can help with making robust adaptation decisions, but would be of
limited use if we could not say which outcomes are more or less likely than
others” ðJenkins et al. 2009, 23Þ.

The challenges many decision makers have to address arise at a local
level: flood barriers have to be built in a particular location and to a given
height, and so on. For this reason, local user-relevant information about the
impacts of climate change is the most useful, assuming of course that it is
not misinformative ðSmith and Stern 2011Þ.

UKCP09 strives to meet the demand for decision-relevant information at
the local level by producing highly specific information ðJenkins et al. 2009,
6–7Þ. Probabilities are given for events on a 25-kilometer grid. Forecasts
are made for finely defined specific events such as changes in the tempera-
ture of the warmest day of a summer and the precipitation of the wettest day
of a winter. It is predicted, for instance, that under a medium emission sce-
nario the probability for a 20%–30% reduction in summer mean precipita-
tion in central London in 2080 is 0.5 ðJenkins et al. 2009, 36Þ.

3. The Architecture of UKCP09. These predictions are generated with a
method involving both global climate models ðGCMsÞ and elaborate sta-
tistical techniques. In this section we outline the method, in five parts, with
the aim of identifying key assumptions and making its architecture visible.5

3.1. Modeling. The cornerstone of UKCP09 is HadCM3, a GCM de-
veloped at the Hadley Centre. The model consists of two coupled modules,
one representing the earth’s atmosphere ðincluding land surface processes and
surface-atmosphere exchangesÞ and one representing the oceans. Our best
descriptions of thesefluids come fromnonlinear partial differential equations
ðPDEsÞ, which define the evolution of continuous fields representing the
atmosphere or ocean. It is neither possible to integrate PDEs exactly nor to
measure precisely the continuous fields required to initialize them. Instead

5. Our account of the method is based on Murphy et al. ð2010, chap. 3Þ.
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they are discretized onto a grid in space and in time. Today’s computational
constraints force climate models to use a relatively coarse grid; those used in
UKCP09 have a typical resolution of around 300 kilometers.

The model includes tens of thousands of dynamical variables and hun-
dreds of parameters specifying the value of physical magnitudes, represent-
ing physical constants or controlling small-scale processes that are not re-
solved explicitly. To aid the discussion let us introduce some notation. Let
xðtÞ5 fx1ðtÞ; x2ðtÞ; : : :g be the vector of all dynamical variables and a5
fa1;a2; : : :g the vector of all parameters in the model; then let fC

t ðx; aÞ be
time evolution of HadCM3, specifying the future value of the system’s dy-
namical variables given certain initial conditions and certain parameter values.

Even state-of-the-art computers take a long time tomake a 100-year run of
fC

t ðx; aÞ, and so a simpler model is needed for most calculations ða ‘run’ is
the calculation of the future value of x given a particular initial condition
and a set of parameter valuesÞ. To this end the entire ocean module is elim-
inated and replaced by a so-called slab ocean. With no currents and a uniform
effective depth, this slab ocean is defined via simpler equations. The result is
HadSM3.6 We write fS

t ðx; aÞ to denote the time evolution of this model,
where we take it as understood that the vectors x and a vary with the model
structure ðHadSM3 having fewer variables and parameters than HadCM3Þ.

3.2. Perturbed Physics Ensemble. The problem in determining the
future values of x is that “the available information is seldom precise enough
to allow the appropriate value of a given parameter to be accurately known”
ðMurphy et al. 2010, 37Þ. Not knowing what value of a to use in our cal-
culations, assuming there is one, “gives rise to the parameter component of
model error” ð37Þ.7

The technique of a perturbed physics ensemble ðPPEÞ is designed to
address this difficulty.8 The idea of a PPE is to calculate future values of x
for a number of different values of a. If, for instance, modelers are uncer-
tain about “the” reasonable value of parameter a2 but believe that it lies
between a2;min and a2;max, they carry out calculations of x for as many values
in the interval ½a2;min; a2;max� as they can afford. The variability of the out-
comes then gives them a sense of the sensitivity of the model. Calculating
future x’s for a number of different parameter values amounts to construct-

6. Going from HadCM3 to HadSM3 roughly doubles the speed of the model.

7. This assumption is controversial. Smith ð2002, 2006Þ argues that for imperfect models
appropriate values ðleading to trustworthy forecastsÞ may not exist. For want of space we
set these worries aside; for more on this point, see Smith and Stern ð2011Þ.
8. We note in passing the lack of unanimity on whether the second ‘P’ of PPE stands for
‘parameter’, ‘parameterization’, or ‘physics’. For more on PPEs, see Allen and Stain-
forth ð2002Þ.
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ing a PPE because the variation of the parameter values amounts to per-
turbing the physics yet without changing the mathematical structure of the
model ðbecause the functional form of each equation remains unchangedÞ.

In a complex model like HadCM3 a single research center can only make
a relatively small number of runs due to the limitation of computational re-
sources. The question then is how to construct a PPE for a model with hun-
dreds of parameters if only a small number of runs can be made. UKCP09
solves this problem by first restricting attention to atmospheric parameters
and then soliciting parameterization experts to identify those parameters
that control the crucial processes in the system and on which the future
values of x depend most sensitively. This process led to the identification
of 31 crucial parameters and the definition of associated plausible intervals
for them. To explore the uncertainty of future values of x brought about
by the variation in these 31 parameters, 280 runs were made with HadSM3.
Information from 17 HadCM3 runs was added later.

3.3. Emulator. Unfortunately this number remains too small to provide
a good understanding of the diversity of outcomes. An emulator is there-
fore built to provide values of x corresponding to values of a for which no
runs were made. In other words, the emulator “fills the gaps” between the
280 points obtained in section 3.2.

3.4. Probability. What is the uncertainty of future values of x given the
diversity in a? Uncertainty is quantified by giving a probability distribution
over the interval associated with a. The emulator correlates every value of
a with an outcome x, and these distributions are reinterpreted as proba-
bilities for x. UKCP09 assumes that each value of a within the middle 75%
of the interval is equally likely and that the probability linearly drops to zero
at the minimum and maximum values. These probabilities are then adjusted
by assigning relative weights to all values of a according to the emulator-
implied ability of the model to represent observations when simulating a pe-
riod similar to the past.

3.5. Downscaling. Themodel calculations are donewith a resolution of
the order of 300 kilometers but predictions are sought at the 25-kilometer
scale. To generate predictions at that level of detail the results are down-
scaled using simulations of a limited area regional climate model configured
from HadCM3 and run at a 25-kilometer horizontal resolution.

The endeavors of these five parts taken together produce the predictions
we have discussed in the last section.

4. Structural Model Error. Each of these steps raises potentially signifi-
cant conceptual and methodological questions. For want of space we can
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only deal with what we see as one central problem in section 3.1: structural
model error ðSMEÞ. Like every model, HadCM3 has its imperfections. In
order to specify fC

t ðx; aÞ a number of strong idealizing assumptions are
made. These include ðeffectiveÞ distortion of the topography of the earth
ðmountain ranges like the Andes are systematically too smooth and too short;
small volcanic island chains with visible impacts on atmospheric circulation
do not existÞ and approximations of the effects of cloud fields that cannot be
simulated realistically at the available resolution. Furthermore, solutions of
the discretized PDE differ from those of the original PDE, and the PDE itself
differs from what the true equations of the world would be ðassuming such
equations exist at allÞ. In addition, there are limitations to our scientific un-
derstanding of the climate system, and there may be relevant factors and
processes about which we are simply unaware that would lead us to alter the
equations of the model even under our current computational constraints.

Inasmuch as SME is due to shortcomings in the equations of the model,
the challenges it poses to forecasting cannot be resolved by varying the
model’s parameters. If a model has SME, this means that the time evolution
of an ensemble will, eventually, differ from that of a better model and in-
deed from reality itself, if a relevant distribution can be associated with
reality. No adjustment of the parameters can remove this difference. One
crucial question is: how soon do dramatic effects of SME manifest them-
selves in a given situation? Another is what extent can a model with SME
still be informative about the target system? On what timescales does the
science ðwhich underlies the modelÞ suggest that a decision maker should
expect a big surprise if he took the model outputs as trustworthy?

UKCP09 acknowledges the presence of SME and proposes a way to deal
with it. The message is that the uncertainties due to SME can be estimated
and taken into account in projections.9 In this section we outline their ap-
proach, and in the next we ask whether its use for the provision of quantita-
tive decision support is justified.

UKCP09 aims to capture the difference between the model and the real
world with a so-called discrepancy term, which “represents how informative
the climate model is about the true climate, and it measures the difference
between the climate model and the real climate that cannot be resolved by
varying the model parameters. Such differences could arise from processes
which are entirely missing from the climate model, or from fundamental de-
ficiencies in the representation of processes which are included, through ðsayÞ
limited resolution or the adoption of an erroneous assumption in the pa-
rameterisation scheme” ðSexton et al. 2012, 2515; see also Murphy et al.
2010, 63–64Þ. Assume, then, that we are interested in ‘the true climate’ at a

9. The UKCP09 science report calls the proposed method “an appropriate means of
quantifying uncertainties in projected future changes” ðMurphy et al. 2010, 66Þ.
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particular future instant of time t* ðe.g., August 2080Þ,10 and let c be the true
value of x at t* ðhereafter ‘target’Þ. The relation between the model output
and the target then is:11

c5 fS
t*
ðx0; a*Þ1 d;

where a* is the set of parameter values that best simulates the target. The
discrepancy d is a vector in the system’s state space, and it can be inter-
preted as telling us “what the model output would be if all the inadequacies
in the climate model were removed, without prior knowledge of the ob-
served outcome” ðSexton et al. 2012, 2515Þ.

Now follow two crucial assumptions. The first assumption is “that the
climate model is informative about the real system and the discrepancy term
can be seen as a measure of how informative our climate model is about
the real world” ðSexton et al. 2012, 2515; original emphasisÞ. The idea is
that informativeness comes in degrees and is indirectly proportional to the
length of d: the smaller d the more informative the model. That the model is
informative then amounts to assuming that d is small. We call this the in-
formativeness assumption. The second assumption concerns the discrepancy.
While d is defined as a vector, in practice one cannot know the exact vector
and so it is assumed that there is probability distribution ε over d. This dis-
tribution is then assumed to be Gaussian ðSexton et al. 2012, 2515Þ. We re-
fer to the package of the two as the core assumption.

With this assumption in place UKCP09 sets out to estimate the param-
eters of ε. Not being omniscient, one cannot just compare model outputs
with the truth. The crucial move in UKCP09 is to use a multimodel en-
semble ðMMEÞ as a proxy for the truth: “Our key assumption is that sam-
pling the effects of structural differences between the model chosen for the
PPE and alternative models provides a reasonable proxy for the effects of
structural errors in the chosen model relative to the real world” ðSexton et al.
2012, 2516Þ.12

The MME in question contains 12 models ðSexton et al. 2012, 2519Þ.
The claim then is that measuring the average distance of HadSM3 to a set of
different models yields a similar result as measuring its distance to the real
world—hence, d can be determined by measuring by how much HadSM3

10. There is, obviously, a serious confusion that we cannot clarify here: climate is a
distribution, the state of the atmosphere at a given time ð‘weather’Þ is a point. Our un-
certainty in the ‘true’ ðwe would prefer ‘target’Þ value of x at time t does not correspond to
the climate at time t.

11. See Sexton et al. ð2012, 2521Þ. Throughout we use our own notation, which differs
from Sexton’s.

12. See also Sexton et al. ð2012, 2526Þ and Murphy et al. ð2010, 64Þ.
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diverges from those other models. We call the view that an MME is a trust-
worthy proxy for the real world the proxy assumption.

For each model in the ensemble a*, the best HadSM3 analogue, is de-
termined. Having found the best analogue, the prediction error b is calcu-
lated, essentially the difference between the two model outputs. With these
b’s the mean and variance of ε are determined.13

Under the proxy assumption, this procedure quantifies the additional
uncertainty due to model error. This uncertainty is now added to the uncer-
tainty about values of x obtained in section 3.4, yielding the total uncertainty.
The uncertainty is expressed as a probability distribution; it is this distribu-
tion that is presented as guidance for decision makers.

In the following section we argue that neither the core assumption nor the
proxy assumption are well founded. The restriction to these two assump-
tions is due to lack of space; other aspects of the approach also raise serious
questions.

5. The Assumptions Scrutinized. Our discussion of the core assumption
focuses on informativeness. It is an undisputed fact that systematic errors in
the models in question lead to nontrivial macroscopic errors of simulation,
of the past and of the future. Seager et al. ð2008Þ have noted their inability to
reproduce the dust bowl of the 1930s even given the observed sea-surface
temperatures. This is not a small inadequacy when one is focused on the
resolution offered by UKCP09. Given these systematic errors, there are lead
times at which the failure of the model to simulate realistic weather causes the
climate of the model to differ from that of the planet ðSmith and Stern 2011Þ.
Inasmuch as the models used are not close to the target, the informativeness
assumption fails. Figure 1 shows model global mean temperatures over the
last century of the 24 models of the Coupled Model Intercomparison Project
Phase 3 ðCMIP3Þ.14 Note that while all models show warming between 1900
and2000, theiraveragetemperaturesvary tremendously. Themagnitude of the
error in the globalmean in a hindcast of the last century casts significant doubt
on the viability of the informativeness assumption on a 25-kilometer forecast
to the end of this century.

Even if one were to discard the above as undue pessimism and uphold the
informativeness assumption, there is a further problem. An argument to up-
hold the informativeness assumption now must be based on the trustwor-
thiness of the modeling assumptions, typically taking the form that if the
model assumptions are close to the truth, then the model outputs must be
close to the truth too. While this inference works in some specific applica-

13. See Sexton et al. ð2012, 2521–27Þ. To be precise, what is determined is the co-
variance matrix.

14. Thanks to Ana Lopez for producing the figure.
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tions, it is generally false for nonlinear models even if their SME is extremely
small ðFrigg et al. 2014Þ. Since the relevant climate models are nonlinear, it
follows that even if the model assumptions were close to the truth this would
not automatically warrant trust in the model outputs. In fact, the outputs for
relevant lead times 50 years from now could still be seriously misleading.

The discussion of the proxy assumption is complicated by the fact that
the literature on the subject exhibits a certain degree of schizophrenia. On
the one hand, the method is illustrated and advertised as delivering trust-
worthy results; on the other hand, disclaimers that effectively undermine the
crucial assumptions are also included, sometimes parenthetically, obscurely,
or deep within technical discussions.15 The documentation gives with one
hand and takes back with the other. We now review the activities of both
hands and conclude that the hand that takes back voids the trustworthiness of
the forecasts for quantitative decision support.

The first reason cited in support of the proxy assumption is that multi-
model averages give a better representation of climate than any individual

15. An example is Murphy et al. ð2010, 63–69Þ.

Figure 1. Global mean annual temperature, twentieth century. A color version of
this figure is available online.
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model: “Indeed, the multimodel ensemble mean has been shown to be a
more skillful representation of the present-day climate than any individual
member” ðSexton et al. 2012, 2526Þ. Yet it is also acknowledged that “sys-
tematic errors to all current climate models persist” ð2526Þ so even if one
were to accept that such a multimodel mean were more skillful at represent-
ing the present day climate than individual models, is ‘more skillful’ close to
being ‘skillful’? Unfortunately, there appears to be no evidence that ‘more
skillful’ can be equated with ‘skillful’ for many variables of importance for
future climate change.

The second reason mentioned in support of the proxy assumption is that
“the structural errors in different models can be taken to be independent”
ðMurphy et al. 2010, 66Þ and that therefore the ensemble samples uncer-
tainty well. However, immediately after we are warned that “whilst there is
evidence for a degree of independence . . . , there is also evidence that some
errors are common to all models . . . , due to shared limitations such as
insufficient resolution or the widespread adoption of an imperfect param-
eterisation scheme. From this perspective, our estimates of discrepancy can
be viewed as a likely lower bound to the true level of uncertainty associated
with structural model errors” ðMurphy et al. 2010, 66Þ. And then the con-
clusion is drawn that “the main ðand inevitableÞ limitation, however, is that
it ½the proxy assumption� does not account for the potential impacts of errors
common to all climate models used in the prediction” ðSexton et al. 2012,
2516Þ.

One cannot have one’s cake and eat it too. If there are common errors, the
proxy assumption fails. Indeed such common errors have been widely ac-
knowledged ðsee, e.g., Parker 2011Þ. Furthermore, the mathematical space
of all possible climate models ðif there is some such thingÞ is huge, and there
is no reason to believe that the 12 models we de facto work with provide a
representative sample.

For these reasons, the assumption that the use of an MME will accurately
quantify the distance to our true target is unjustified. It produces a distribu-
tion that is more consistent with the diversity of current models but need not
reflect the uncertainty in our future ðSmith 2002Þ. It is important to note that
the fear is not so much that the width of the uncertainty distribution is too
narrow but, rather, that the distribution is simply in the wrong place and that
the mean of the distribution will shift significantly if the model simulations
become realistic.

Echoing Murphy and colleagues, we note that “it is important to stress
that our approach to the specification of discrepancy can only be expected to
capture a subset of possible structural modelling errors and should be re-
garded as a lower bound” ðMurphy et al. 2007, 2011Þ. A lower bound need
neither yield trustworthy forecasts nor provide a suitable basis for quanti-
tative decision support.
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6. Conclusion. We have argued that there is little evidence for interpreting
UKCP09’s predictions as trustworthy forecasts for quantitative decision sup-
port. Questioning the evidence, however, does not amount to proving it
wrong. Our point is that the premises of the argument do not warrant trust
in the results, and for decision support in the face of climate change this is
the crucial aspect.

To be fair to the scientists who worked very hard to make UKCP09 the
best it could be, several points should be noted. First the deliverables of the
project were defined before any viable approach to meet them was available
in the peer-reviewed literature. Second, the United Kingdom Climate Im-
pacts Program, which is much broader than UKCP09, faced the dilemma
of motivating users to engage with the real challenges and significant risks
posed by climate change in the face of deep uncertainty: the challenge of
keeping users interested when the information they most desire lies beyond
the reach of today’s science. And last, pointers to the fact that a naïve inter-
pretation of UKCP09 probability distributions is untenable can indeed be
found within the UKCP09 material.

That said, the aim of UKCP09 was to provide trustworthy forecasts now,
and this, we have argued, they fail to do. Kelly’s ð1979Þ plea holds today:
climate prediction experiments remain essential, and they must “be con-
ducted with scientific rigour and presented with an honest assessment of the
uncertainties involved” ðKelly 1979, 182Þ.
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