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Gibbsian statistical mechanics (GSM) is the most widely used version of statistical mechanics
among working physicists. Yet a closer look at GSM reveals that it is unclear what the theory
actually says and how it bears on experimental practice. The root cause of the difficulties is the
status of the averaging principle, the proposition that what we observe in an experiment is the
ensemble average of a phase function. We review different stances toward this principle, and
eventually present a coherent interpretation of GSM that provides an account of the status and
scope of the principle.

1. Introduction

Gibbsian statistical mechanics (GSM) is a powerful theory because it offers a gen-

eral prescription of how to calculate an array of equilibrium properties, and its meth-

ods are applied across a large range of different systems. For these reasons GSM

is widely used and considered by many to be the most important formalism of sta-

tistical mechanics.1 Yet a closer look at GSM reveals that it is unclear what the the-

ory says and how it bears on experimental practice. The issue is that GSM is an en-

semble theory and as such it makes statements about the behaviour of ensembles

rather than about individual physical systems. A common way of bridging the gap

between ensembles and systems is to adopt what we call the averaging principle

(AP): what we observe in an experiment on a system is the ensemble average of a

phase function representing a relevant physical quantity. Although this principle is

commonly used in applications, the status and scope of the principle are unclear

and different authorsmake conflicting pronouncements. But until the status and scope

of the AP are settled, or some alternative method of bridging the gap between en-

sembles and individual systems has been found, it is unclear what the content of

GSM is. Hence our plea: can somebody please say what GSM says?

© 2018 The Author(s). All rights reserved.

1The first chapter of Landau and Lifshitz’s ([1980]) classical introduction is entitled ‘the fundamental prin-
ciples of statistical physics’ and is dedicated entirely to a discussion of the Gibbs formalism; Isihara
([1971]) introduces the Gibbs formalism in a chapter called ‘principles of statistical mechanics’. These
are no exceptions.



We first introduce GSM, lay bare the problem of connecting the formalism of

GSM to the behaviour of individual physical systems, and document the lack of a

consensus on the matter in the physics literature (Section 2). We then point out that

remaining silent about the problem does not make the problem go away (Section 3),

and that the traditional answer in terms of time averages is not viable for a number of

reasons (Section 4). We proceed to introduce a position we call ‘bare probabilism’,

the view that the probability measures in GSM give universally true probabilities for

events to occur and that nothing else should be read into GSM. We discuss two ver-

sions of this view, one based on ensembles and one based on the notion that the

theory’s probability measure r is the macro-state of a system, and point out that both

of them leave essential questions unanswered (Section 5). The answer to these ques-

tions comes from the study of fluctuations. These can be integrated into probabilism

in two different ways, leading to two equally acceptable positions that we call ‘qual-

ified probabilism’ and ‘fluctuation probabilism’ (Section 6). Probabilism endorses

r-universalism, the view that r gives the correct probabilities for all events at all

times. We point out that this assumption is not generally true and that probabilism

only works if what we call the ‘masking condition’ or the ‘f-independence condi-

tion’ hold. Under these conditions, and if fluctuations turn out to be thermodynamic,

the AP is justified (Section 7). We finally draw some conclusions and point out that

there are justifications of the AP that do not rely on probabilism (Section 8).

Two caveats are in place. First, throughout the article we discuss GSM in the set-

ting of classical mechanics, and we assume that the dynamics is deterministic. We

believe that many of the issues we discuss will recur when GSM is applied to clas-

sical stochastic systems or to quantum systems,2 but space constraints prevent us

from discussing these systems here. Second, even though there are attempts to gen-

eralize GSM to non-equilibrium situations, GSM is first and foremost an equilibrium

theory. We restrict attention to the equilibrium case and set non-equilibrium consid-

erations aside.

2. Systems and Ensembles

A system S is a part of the physical world: a gas in a container, a crystal on the lab-

oratory table, a liquid in jar. From a mathematical point of view a system has the

structure of a ‘measure-preserving dynamical system’. In the current context the

difference between a physical system and its mathematical representation is inessen-

tial, and we use the term ‘system’ to refer to either the physical object or its math-

ematical representation.3 A system, then, is a quadruple (X , ΣX , ft, m). X is the sys-

tem’s state space, which contains all states the system’s micro-constituents could

assume. For this reason the states in X are referred to as ‘micro-states’. In the case

2Classical stochastic systems are discussed in (Werndl and Frigg [2017b]).
3For a discussion of what it takes for a mathematical object to represent a physical system, see (Nguyen
and Frigg [2018]).
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of a gas consisting of n molecules, X has 6n dimensions: three dimensions for the

position of each particle and three dimensions for the corresponding momenta. ΣX
is a j-algebra of subsets of X, and m is a measure on ΣX. The evolution function

ft determines how the system’s micro-state changes over time. If at a certain time

t0 the system is in micro-state x0, then it will be in state ft(x0) at a later time t.

The path that ft(x0) traces through X as time evolves is the trajectory through x0,

and x0 is the initial condition. Throughout we assume that mX is invariant under ft,

meaning that the subsets of X can change their shape but not their measure as time

evolves.4

At the macro-level the system is characterized by a set of macro-variables such as

volume, pressure, and magnetization. From a mathematical point of view, macro-

variables are functions f : X → R, that is, functions that associate a real number

with each point in X. If, for instance, f is the magnetization of the system and the

system is in micro-state x, then f (x) is the magnetization of the system when it is

in micro-state x.

Systems as defined so far do not come equipped with a notion of equilibrium; nor

is any such notion tacitly implied either by the definition of a system or by the def-

inition of a macro-variable.

The key concept of GSM is that of an ensemble. Informally an ensemble is often

described as an infinite collection of systems of the same kind (and with the same

time evolution) that differ in their state.5 It is important that an ensemble is a collec-

tion of copies of the entire system S (as characterized above) and not a collection of

molecules. In fact, an ensemble is best thought of as a collection of ‘mental copies of

the one system under consideration’ (Schrödinger [1989], p. 3). Hence the members

of an ensemble do not interact with each other; an ensemble is not a physical object;

and ensembles have no spatiotemporal existence.

A natural question to ask about a collection of systems that differ in their instan-

taneous state is how these states are distributed. The distribution of states is formal-

ized with the aid of a probability measure r on X, which encodes, intuitively speak-

ing, what proportion of systems in the collection are in states that are located in a

certain subset of X. With r at hand, one would now want to ascend from the intuitive

to the precise and offer a formal definition of an ensemble. But at this point, an am-

biguity becomes apparent. The issue is that talk of a ‘collection of systems’ allows

for two readings.

On a narrow reading, an ensemble is a collection of systems that are distributed in

a particular way. This can be formalized by associating the ensemble with a partic-

ular probability measure: the ensemble simply is the measure r. This squares with

locutions like ‘the micro-canonical ensemble’ or ‘the canonical ensemble’, which

4A more extensive description of the elements of a system can be found in (Werndl and Frigg [2015]). For
a general introduction to dynamical systems, see (Katok and Hasselblatt [1993]).

5This is Gibbs’s ([1981], p. 5) original characterization; see also (Hill [1986], p. 3; [1987], p. 4; Agarwal
and Eisner [1988], p. 5; Schrödinger [1989], p. 3; Kittel [2004], pp. 7–8).
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seem to associate ensembles with a particular distribution (more about these distri-

butions below). However, this reading has an important limitation. In the physics

literature, one also often encounters talk of the ‘state of an ensemble’, and of the state

of an ensemble changing.6 But talk of the state of an ensemble is pointless if the en-

semble is defined by r: if the distribution changes, one ensemble goes out of exis-

tence and a new ensemble is created. On the narrow reading, a change in r is not a

change of an ensemble’s state; it is an act of annihilation and recreation.

A broad reading accommodates the notion of a change of state. It interprets an

ensemble as a ‘bare’ collection of systems: a collection of systems that has no par-

ticular distribution. The systems in the ensemble can then be distributed in different

ways. These ways can be described by different measures r, which are the ensem-

ble’s states. This suggest a definition of an ensemble as a pair (X, P), where P is the

class of all probability measures over (X , ΣX ). P is the ensemble’s state space: each

measure in P specifies a state of the ensemble; if the measure changes, the ensem-

ble’s state changes. The time evolution of the ensemble is described by changes in r.

If changes in r happen solely due the unperturbed evolution of the systems in the

ensemble, then the ensemble distribution at time t is given by rt(x) 5 r0(f2t(x)),

where r0 is the distribution at the initial time t0.

Nothing in what follows depends on which of the two definitions of an ensemble

one adopts, and our points can be made with either of the definitions. However, our

discussion is more easily framed in the broader reading, and hence we adopt that

reading from now on.

The ensemble average of a macro-variable f for an ensemble in state r is:

〈 f 〉 5
ð
X

f (x)r(x, t)dx: (1)

In his discussion of ensembles, Gibbs ([1981], p. 8) introduces what he calls the

‘condition of statistical equilibrium’. An ensemble is in statistical equilibrium if

and only if r is stationary.7 A distribution is stationary if and only if it does not

change over time, meaning that it is invariant under the dynamics: r0(x) 5 rt(x)

for all t. For obvious reasons 〈 f 〉 is constant if the distribution is stationary.

There will usually be a large number of stationary distributions for a certain dy-

namics and so the question of these distributions should be chosen to characterize a

given situation arises. Gibbs discusses this issue at length and proposes the so-called

micro-canonical distribution if the system is completely isolated from its environ-

ment, and the so-called canonical distribution if the system is in contact with a heat

6See, for instance, (Tolman [1979], p. 46).
7This view is adopted widely in the extant physics literature as well as in philosophical discussions about
GSM; see, for instance, (Tolman [1979], p. 63; Hill [1987], p. 8; Myrvold [2016], pp. 588–9). A diverg-
ing account was put forward by van Lith ([1999]) who suggested replacing stationarity with the require-
ment that the distribution be such that the phase average of a few selected phase functions be constant.
Our concerns are orthogonal to van Lith’s and none of the issues that we discuss below change if van
Lith’s definition is adopted.
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bath of a certain temperature.8 The justification of these distributions as the correct

distributions for certain situations can proceed along different lines, and a number of

suggestions have been made.9 We pass over this matter here because nothing in

what follows depends on how the choice of a particular distribution is justified.

The crucial point to bear in mind is that statistical equilibrium pertains to an ensem-

ble and hence provides a notion of an ensemble-equilibrium.

The notion of an ensemble-equilibrium contrasts with that of a system-equilibrium.

As noted above, a system is part of the physical world. When is such a part in equi-

librium? Thermodynamics (TD) offers a clear answer to this question: a system is in

thermodynamic equilibrium ‘when none of its thermodynamic properties are chang-

ing with time’ (Reiss [1996], p. 3).10 In other words, the idea is that we look at a full

set of thermodynamic variables and track their values over time; when the values do

not change any more, then the system has reached equilibrium. The values that the

system settles on when values do not change any more are the equilibrium values.

We are now faced with two different objects of study and two different notions of

equilibrium. On the one hand there are systems, which can be in thermodynamic

equilibrium. On the other hand there are ensembles, which can be in statistical equi-

librium. How do these points of view relate to one another? This question is of par-

amount importance because statistical mechanics requires both. A physical system

is what one has experimental access to and what one ultimately aims to study. At the

same time it is the ensemble approach that provides the mathematical apparatus to

carry out calculations and generate predictions. But what do calculations performed

on an ensemble tell us about the properties of a system? Or for those who prefer to

think about the problem in terms of experiments: what do ensemble calculations tell

us about experimental results?

A common way to bridge the gap between ensembles and systems is to adopt the

AP: when measuring the property f on a system in system-equilibrium, the observed

equilibrium value of the property is the ensemble average 〈 f 〉 of an ensemble in

ensemble-equilibrium.11 About two thirds of the around thirty textbooks on statis-

tical mechanics we consulted when researching this article offer explicit statements

8These distributions are discussed in any textbook on statistical mechanics; see, for instance, (Lavis [2015]).
9For surveys, see (Myrvold [2016]; Frigg and Werndl [forthcoming]).

10Thermodynamic equilibrium is also discussed in (Pippard [1966], pp. 5–6; Guggenheim [1967], p. 7;
Kubo [1968], p. 2; van Ness [1969], p. 74; Buchdahl [1975], p. 2; Honig [1999], p. 3; Fermi [2000],
p. 4; Gyftopoulos and Beretta [2005], p. 55). Being in thermodynamic equilibrium is an intrinsic prop-
erty of the system, which offers a notion of ‘internal equilibrium’ (Guggenheim [1967], p. 7). It contrasts
with ‘mutual equilibrium’ ([1967], p. 8), which is the relational property of ‘being in equilibrium with
each other’ that two systems eventually reach after being put into thermal contact with each other. Mu-
tual equilibrium is often referred to as ‘thermal equilibrium’. It is the notion that figures in the zeroth law
of TD, which effectively says that thermal equilibrium is an equivalence relation. In the current context,
thermodynamic rather than thermal equilibrium is the relevant concept.

11AP only makes the conditional claim that if a physical quantity is associated with a phase function f, then
the outcome of a measurement of that quantity is 〈 f 〉. It remains silent about temperature and entropy,
for which there are no phase functions.
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of AP, and those that do not explicitly state AP appeal to it tacitly by basing their

considerations on averages.12 The formulations of the principle in textbooks also

make it clear that AP concerns single measurements. So AP should be read as saying

that the outcome of a single measurement of property f on a system in system-

equilibrium is 〈 f 〉. The full content of AP is, however, left underdetermined until

a theory of measurement is supplied. As we will see below, different schools of

thought do this in different ways (associating measurement outcomes either with

time averages or instantaneous values), which results in different versions of the

principle.

AP lets us have the best of both worlds: one can use the formalism of ensembles to

calculate equilibrium properties of a system. The importance of this principle in

practical applications is beyond dispute: calculating averages is the backbone of

GSM and it is what delivers the results. However, pronouncements on the status

of the principle vary considerably, even among authors who state AP explicitly.

Some regard AP as the cornerstone of GSM. Chandler ([1987], p. 58) calls it the ‘pri-

mary assumption of statistical mechanics’, and Pathria and Beale ([2011], p. 31) re-

gard it as the ‘themost important result’. Others urge caution. Hill ([1987], p. 8) notes

that no ‘completely rigorous proof is available’, and Kittel ([2004], p. 8) says that ‘it

has not been proved in general’. Gibbs ([1981], p. 168) himself endorses the princi-

ple only for certain situations, and Lawden ([2005], p. 60) emphasizes restrictions.

Yet others remain silent about the question of status and scope (see, for instance,

Baxter [1982], p. 9).

So there are serious questions of rationalization. What does it mean to perform a

measurement? Under what circumstances does AP apply? And how is the applica-

tion justified? As previously noted, AP occupies centre stage in GSM and it is em-

pirically successful in that it allows for the calculation of a vast array of equilibrium

values that are then found to be in good agreement with experimental results. But as

long as the status of a core constituent of a theory is unclear, the content of the theory

itself is unclear.

3. Quietism

Mathematically minded books tend to eschew the question and simply accept the

association of thermodynamic values with ensemble averages as a proposition that

12Explicit statements are given by Agarwal and Eisner ([1988], p. 7), Baxter ([1982], p. 9), Chandler
([1987], p. 58), Greiner et al. ([1993], p. 219), Hill ([1986], p. 13, [1987], p. 9), Isihara ([1971],
pp. 23–5), Jancel ([1969], pp. xix–xxii), Jelitto ([1989], pp. 198–205), Khinchin ([1949], pp. 44–7),
Kittel ([2004], p. 8), Landau and Lifshitz ([1980], p. 6), Lavis and Bell ([1999], p. 32), Pathria and Beale
([2011], p. 31), and Ruelle ([1969], p. 3). The principle is stated with some reluctance (which we discuss
below) by Gibbs himself ([1981], p. 168), Lawden ([2005], pp. 60–1), and Tolman ([1979], pp. 62–70).
The principle is implicit in Mackey ([2003], pp. 11–4), Sadovskii ([2012], pp. 5–7), and the discussion
of the Gibbs formalism in Ehrenfest and Ehrenfest ([1959], pp. 47–51). A tacit appeal to the principle can
be witnessed in Feynman ([1972], Chapter 1), Huang ([1963], Chapters 7–8), Lavis ([2015], Chapter 2),
Reif ([1985], Chapter 2), Schrödinger ([1989], Chapters 2, 6), and Thompson ([1972], Chapter 3,
[1988], Chapter 2).
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does not stand in need of further explanation. Thompson ([1972], p. 61, [1988],

p. 30) simply equates work and pressure with ensemble averages without further

comment. Similar moves can be found in (Baxter [1982], p. 9; Feynman [1972],

pp. 1–6). This ‘quietist’ approach is conceptually unsatisfactory because it sheds

no light on the relation between GSM and TD. One simply has to accept it as a prim-

itive assumption that the values of thermodynamic variables can be expressed in

terms of ensemble averages without an explanation of why this is so. While practi-

tioners may find it expedient to avoid the issue in this way, from a foundational point

of view quietism is a deeply unsatisfactory position because it leaves the relation

between GSM and TD (or indeed any macroscopic account of a system’s behaviour)

unexplained.

4. The Time Average Approach

The ‘standard’ textbook approach explains AP by equating phase averages with

time averages.13 The infinite time average of f is

f *(x0) 5 lim
t→∞

1

t

ð t01t

t0

f (ft(x0))dt, (2)

where x0 is the initial state of the system at time t0. The argument runs as follows. As

we have seen above, macro-variables are associated with functions f on X. Carrying

out a measurement of f takes time, and hence what the measurement device regis-

ters is the time average of f over the duration of the measurement. Since performing

a measurement takes a long time compared to the time scale on which typical mo-

lecular processes take place, the measured result is approximately equal to the infi-

nite time average of the measured function. A system is ergodic if for all measurable

functions the infinite time average is equal to the ensemble average for almost all

initial conditions.14 If one now assumes that the system is ergodic, one can equate

the time average and the ensemble average, which provides the sought-after connec-

tion: GSM provides phase averages that, by ergodicity, are equal to infinite time

averages, and these are equal to the values obtained from measurements.

Implicit in this answer is the postulation that f * is the equilibrium value of the

system. Although this is plausible given the other assumptions, there is a conceptual

difference between equilibrium values and time averages and that the two are equal

has to be added as an additional postulate. So we arrive at the following position.

The observed value in a measurement of f on a system in equilibrium is f *. The

system is ergodic and therefore it is the case that f * 5 〈 f 〉 for almost all initial

13This strategy can be found, for instance, in (Khinchin [1949], pp. 44–7; Jancel [1969], pp. xxii–xxiii;
Isihara [1971], pp. 24–30; Hill [1986], pp. 4–6, [1987], pp. 8–9; Chandler [1987], pp. 57–9; Kittel
[2004], pp. 7–8; Pathria and Beale [2011], pp. 30–2).

14See (Arnold and Avez [1968]) for a detailed discussion of ergodicity; an intuitive introduction can be
found in (Frigg et al. [2016]).

What Is Gibbsian Statistical Mechanics? 111



conditions. One can safely neglect the ‘few’ initial conditions for which this equality

fails, and hence observed values are equal to ensemble averages, as AP has it.

This argument fails for a number of reasons. First, as Malament and Zabell

([1980], pp. 342–3) and Sklar ([1973], p. 211, [1993], pp. 176–9) point out, from

the fact that measurements take some time it does not follow that what is actually

measured are time averages, and the association of measurement results with time

averages is unjustified. Even if one could somehow argue that measurement devices

do output time averages, equating these finite averages with infinite time averages

is problematic. Finite and infinite averages can assume very different values even

if the duration of the finite measurement is very long. This is a sticky point because

the invocation of infinite time averages is crucial: if one replaces infinite with finite

time averages, ergodicity no longer applies, and time averages and ensemble aver-

ages cannot be equated. Furthermore, as Earman and Rédei ([1996]) point out, the

appeal to ergodicity is by no means unproblematic. Many systems are not ergodic

and if a system is not ergodic, then equating time averages and ensemble averages

is completely wrong.15

Furthermore, the assumption that f * is the equilibrium value of f in system S is

introduced as primitive posit and it remains unclear why it should be adopted.

And this is not only a ‘philosopher’s worry’ that practitioners can safely set aside.

The function f could be such that it never assumes the time average as a value,

and then it would seem rather implausible to say that f 5 f * is the system’s equilib-

rium condition. As a simple example consider the number of students registered at a

university at a particular time. It may be the case that the time average of the student

number is 8345.458, but there was no moment in time when 8345.458 students were

registered.

Finally, this account makes a mystery of how we observe change. It is a simple

fact that we do observe how systems approach equilibrium, and in doing so we ob-

serve macro-variables change their values. If it was true that what we observe are

infinite time averages, then no change would ever be observed because these aver-

ages are by definition constant.

For these reasons the time average approach, at least in its current instantiation,

offers no satisfactory justification of AP.

5. Bare Probabilism

An alternative approach urges a concentration on the theory’s probabilistic formal-

ism. The core of GSM is the normalized measure r, and for this reason r has to be the

centrepiece of any acceptable interpretation of GSM. We call this approach ‘prob-

abilism’. As we will see, probabilism comes in a number of variants, which differ in

15One can mitigate the force of this objection somehow by requiring that the system be only e-ergodic rather
than ‘fully’ ergodic (Vranas [1998]). While this resolves some problem, it does not apply to all relevant
cases. For a discussion, see (Frigg and Werndl [2011]).
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what events they recognize and in how much additional theoretical machinery they

accept. What all variants have in common is a postulate we call ‘r-universalism’, the

assertion that r is universally valid in that it gives the correct probabilities for all

events (recognized by the theory) to occur at all times. Throughout this section

and the next we work under the assumption that r-universalism is true. The position

will be scrutinized in Section 7, where we point out that r-universalism is correct

only under certain conditions.

The first variant of probabilism takes the formalism of GSM at face value and in-

terprets r as a probability measure over the system’s phase space, X. This amounts to

saying that if the ensemble is in equilibrium, then for all regions R in X and for all

times, t, the probability of the system’s micro-state being in R at t is:

p(R) 5

ð
R

r(x)dx: (3)

To connect these probabilistic outcomes to observables one now adopts the notion

of an instantaneous measurement, which sees a measurement as happening at a par-

ticular instant of time. Penrose ([2005], pp. 17–18) describes a measurement of that

kind as ‘an instantaneous act, like taking a snapshot’. This idea can be made precise

as follows: if a measurement is performed on a system S at time t and the system’s

micro-state at time t is x, then the measurement outcome will be f (x). An obvious

consequence of this definition is that measurements at different times can have dif-

ferent outcomes, and the values of macro-variables can change over time.

AP has not entered the scene so far, and the handling of AP is what separates what

we call ‘bare probabilism’ from other forms of probabilism. Following Wallace

([2015], p. 285) one can insist that the quantitative content of statistical mechanics

is exhausted by the statistics of observables (their expectation values, variances, and

so on) and that ‘statistical mechanics should not be thought of wholly or even pri-

marily as itself a foundational project for thermodynamics’. On such a view GSM

really is just a study of the statistical properties of r(x) with nothing else added.

Hence, according to bare probabilism AP is superfluous and should be abandoned.

In fact, any attempt to build a principle relating its formalism to thermodynamic

equilibrium into GSM should be renounced. Instead GSM should be regarded as

a purely probabilistic theory. GSM characterizes a system’s statistical equilibrium

and specifies how likely a system will be found in certain micro-states when an in-

stantaneous measurement is performed. That is all that there is to GSM. Any attempt

to read more into GSM, in particular any attempt to read a notion of thermodynamic

equilibrium into it, is misguided and should be resisted.16

As we have seen above, a probability density is in statistical equilibrium if and

only if it is stationary, and on the current approach this is all that there is to say

16We have not been able to find an explicit statement of bare probabilism based on Equation (3) in print.
However, it has been suggested to us as a natural interpretation of GSM on a number of occasions, and it
sets the stage for McCoy’s version of bare probabilism to which we turn shortly.
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on the subject matter of equilibrium in GSM. The consequences of this brand of aus-

terity are severe. The fact that thermodynamic equilibrium and statistical equilib-

rium are both equilibria does not mean that they are somehow similar, or that statis-

tical equilibrium can serve as a stand-in for thermodynamic equilibrium when the

latter is excised. In fact, statistical and thermodynamic equilibrium are not only con-

ceptually different, the two notions also do not have the same extension. An ensem-

ble in statistical equilibrium not only contains systems in thermodynamic equilib-

rium; it can also contain any number of systems that are not in thermodynamic

equilibrium.17 So from the fact that an ensemble is in statistical equilibrium one can-

not infer that a system randomly drawn from that ensemble is in thermodynamic

equilibrium. Conversely, if a given system is in thermodynamic equilibrium, one

cannot infer that this system belongs to an ensemble in statistical equilibrium.

Ensemble-equilibrium and system-equilibrium remain disconnected and unmediated.

In a recent article, McCoy ([forthcoming]) argues that a fundamental mistake has

beenmade early on. Themistake is to associate GSM’s probability distributions with

ensembles, and thereby setting up a dichotomy between ensembles and systems that

one then has to deal with through various interpretative moves. His radical remedy is

to abandon ensembles altogether and regard the probability measure r as the state

of a system. McCoy urges that ‘one must take seriously the idea that probability

measures represent the complete physical states of individual statistical mechanical

systems’ ([forthcoming], p. 9), and therefore calls r a ‘macrostate’ ([forthcoming],

p. 10). States in a statistical theory differ fundamentally from states in a deterministic

theory. The state of a classical mechanical system is specified by a set of specific val-

ues of the position and momentum variables. In a statistical theory no such values

can be given because the state of the system is the probability distribution. The state

of an GSM system specifies the ‘potentialities’ of the system’s observables ([forth-

coming], p. 6) and not its categorical properties: the state says what properties could

be observed and how likely certain outcomes are. At any given time, to specify r is to

say everything that there is to be said about the system’s state at that time, and the

time evolution of the system is given by specifying how r evolves over time. We

refer to this as the ‘probabilistic states interpretation of GSM’.

The next step is to re-interpret the theory’s formalism so that it provides probabil-

ities for observables rather than micro-states. McCoy ([forthcoming], p. 13) points

out that this is easily done. Let f be the observable of interest, and let us denote

a particular value of f by F. Then p(F ) is given by Equation (3) with R 5

fx ∈ X : f (x) 5 Fg. The distribution p(F ) can now be regarded as a probability dis-

tribution for stochastically evolving observables.We now see the new picture before

17This point has been made by Uffink ([2007], p. 1005) who emphasizes that ‘any given system can be
regarded as belonging to an infinity of different ensembles’ and that it therefore ‘makes no sense to
say whether an individual system is in statistical equilibrium or not’. Callender ([1999], p. 367) made
the point in terms of entropy: the Gibbs entropy can assume its equilibrium value and yet a system in
the ensemble can be vastly out of equilibrium. For this reason the Gibbs entropy does not reflect a sys-
tem’s behaviour, and the entropy of a system cannot be reduced to the Gibbs entropy.
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us: the system has macro-states r and observables that evolve stochastically accord-

ing to probabilities given by the system’s macro-state. On this account there are nei-

ther ensembles nor micro-states, and so there is no gap to bridge between systems

and ensembles.

One might object that p(F ) can be defined only through underlying micro-states

and so there is no genuine stochastic dynamics for observables. McCoy ([forth-

coming], p. 11) anticipates this objection and submits that ‘one has to give up on

the idea that statistical mechanical systems possess deterministically evolving clas-

sical micro-states’. Taken at face value this amounts to nothing less than a rejection

of atomism. McCoy ([forthcoming], p. 12) is aware of the radical nature of his pro-

posal and spends some time nuancing it. It is, however, not entirely clear what posi-

tion he ends upwith. On the one hand, he responds, ‘Mygoodness, of course not!’, to

the charge that he repudiates the atomic hypothesis; on the other hand, he submits that

‘people grossly overestimate the import of the alleged body of evidence for discrete,

microscopic entities’, which are a metaphysical posit ‘for which empirical evidence

can hardly be decisive’ ([forthcoming], p. 12).18 Eventually, the position seems to be

that atomism is rejected in the context of classical mechanics and that ‘the atomic hy-

pothesis ultimately requires a quantum interpretation’ ([forthcoming], p. 12).

There are serious questions about whether the rejection of the atomic hypothesis

is a price worth paying (even if restricted to classical mechanics), and about whether

a rejection of micro-states is as readily accommodated in quantum theory as McCoy

seems to suggest. Be this as it may, our concern at this point is more basic: the prob-

lem of the relation between the two kinds of equilibrium has morphed but not

disappeared. If one regards r as the macro-state of a system, statistical equilibrium

pertains to systems (and not ensembles). But recasting statistical equilibrium as a

system-equilibrium does not make it equivalent to thermodynamic equilibrium. The

notions are as different as before. We have simply swapped the problem of bridging

the gap between ensemble-equilibrium (defined as statistical equilibrium) and system-

equilibrium (defined as thermodynamic equilibrium) for the problem of relating two

different notions of system-equilibrium to one another.

At this point, one might ask why such a bridge is needed at all. McCoy ([forth-

coming], p. 3) emphasizes that ‘probability measures only represent the physical

states of individual statistical mechanical systems qua statistical mechanical sys-

tems’. So why not simply say that there are two different perspectives on the same

system—statistical and thermodynamical—which do not need any mediation? Qua

statistical mechanical system the state of a gas is r and it is in statistical equilibrium

if and only if r is stationary; qua thermodynamic system the state of the gas is given

by the values of its macro-variables and it is in equilibrium if none of these variables

change over time; and that is all that there is to be said about the matter.

18A rejection of atomism not only raises general questions, it also precludes us, as McCoy ([forthcoming],
p. 5) notes, from ‘completing the project of the theory’s founders, namely, of reducing TD to the me-
chanical motion of atoms and molecules’.
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This irenic perspectivalism is unconvincing, at least in the context of statistical

mechanics and TD. Since McCoy renounces reductionism he may not be moved

by the fact that irenic perspectivalism undercuts reduction, even though for many

this would be a conclusive reason to abandon the position. But even those who

refuse to enlist in the reductionist cause are not free to simply retreat to the view that

different perspectives need no mediation. Cartwright ([1979]), herself a critic of re-

ductionism, explains that there is a consistency problem. Her main case study is

Maxwell’s derivation of a gas’ viscosity from its mechanical properties (a case close

to our current concerns!), but she illustrates the main point with the intuitive exam-

ple of Eddington’s two tables. Qua macro-object, the table is a piece of wood that

is subject to the engineering laws about elasticity, stress, and so on. Qua micro-

mechanical-object the table is a conglomerate of atoms andmolecules moving under

the laws of fundamental mechanics. Cartwright ([1979], p. 85) then urges: ‘Some

guarantee of consistency is required. What is to prevent macroscopic laws from

moving the table one yard to the left, while all of its molecular components, follow-

ing the laws of microphysics, move 30 millimeters to the right?’. Reductionism of-

fers an elegant answer to the consistency problem: if one theory reduces to another

theory their predictions are consistent. Those who renounce reductionist commit-

ments are still left with the consistency problem. Irenic perspectivalism must give

an account of the consistency of perspectives, and this involves giving some account

of the relation between statistical and thermodynamic equilibrium, even if it is not

the kind of full-fledged reduction that the theory’s founders had in mind.

Scientific practice poses a further challenge for irenic perspectivalism. In practice,

GSM and TD often work in tandem. Calculating phase averages and relating them to

equilibrium thermodynamical quantities is the bread and butter of a physicist work-

ing with GSM.19 When studying the micro-canonical ensemble, the thermodynamic

entropy of a system is associated with ln(q) and the temperature with (dq=dE)21,

where q is the integral of r over a thin sheet around the energy hypersurface of

the system.When working with the canonical ensemble it is standard practice to cal-

culate the Helmholtz free energy F as function of r: F 5 2kT log Z, where Z is the

partition function, which is essentially the normalization factor of r. These quanti-

ties are then inserted into the equations of TD and used for calculations. In many

cases even the thermodynamic equations of state are derived from GSM. This prac-

tice must appear mysterious from a point of view that sees GSM as completely dis-

connected from TD.

Stated without further qualifications, bare probabilism is too weak an interpreta-

tion of GSM. A promising way to qualify the position is to study fluctuations. We

introduce fluctuations in the next section and then ask what their status is vis-à-vis

bare probabilism.

19These calculations are standard and can be found in every textbook on the subject matter; see, for in-
stance, (Huang [1963], Chapter 5; Hill [1987], Chapter 3; Mackey [2003], Chapter 2).
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6. Fluctuations

Away to answer the questions left open by bare probabilism is to study fluctuations.

Since measurement is assumed to be instantaneous, the system’s instantaneous state

x(t) is allowed to fluctuate away from 〈 f 〉. One can now ask how far from 〈 f 〉 the
system is. The difference between 〈 f 〉 and the instantaneous value of f at time t is

a fluctuation:

D(t) 5 f (x(t)) 2 〈 f 〉: (4)

We call jD(t)j the ‘magnitude’ of the fluctuation.

Recall that r-universalism is the position that r provides the correct probabilities

for a system’s state to be in region R at time t for all R in X and for all t. Under that

assumption, Equation (3) can be used to calculate the probability of fluctuations of

a certain size.20 One finds that at any given time t the probability that the magnitude

of D(t) lies in the interval d ≔ ½d1, d2�, where d1 and d2 are real numbers such that

0 ≤ d1 ≤ d2, is:

p(d) 5

ð
D

r(x)dx, (5)

where D 5 fx ∈ X : d1 ≤ jD(t)j ≤ d2g. This equation informs us about the probabil-

ity that the system exhibits fluctuations of a certain magnitude at a certain time t (un-

der the assumption of r-universalism).

The leading idea now is to use the probabilities of fluctuations to characterize a

system’s macroscopic behaviour. As we have seen in Section 2, a system is in ther-

modynamic equilibrium if and only if all change has come to a halt and the system’s

macro-variables assume constant values. By definition, these constant values are the

thermodynamic equilibrium values. Expressing this condition in terms of fluctua-

tions yields that a system is in thermodynamic equilibrium if and only if there are

no fluctuations at all. In this case 〈 f 〉 is the thermodynamic equilibrium value, and

AP is true. However, statistical mechanical systems do not meet this condition and

so requiring the complete absence of fluctuations is a dead end.21 Fluctuations are in-

evitable and a criterion that has any chance of being met can only require that fluctu-

ations are somehow unlikely.

A plausible candidate for such a condition is the requirement that small fluctua-

tions are likely while medium size and large fluctuations are unlikely. In formal

terms, this amounts to requiring that p(d) is noticeably different from zero only for

intervals that lie close to zero and becomes vanishingly small for intervals far away

from zero. A system that exhibits this pattern approximately mimics thermodynamic

20We use the standard version of probabilism and assume that r provides probabilities for the system to be
in certain sets of micro-states. This is choice of convenience; all points that follow could equally bemade
in McCoy’s probabilistic state interpretation.

21The source of the problem is the fact that measure-preserving dynamical systems exhibit Poincaré recur-
rence and time-reversal invariance (Callender [2001]).
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behaviour, and so we refer to fluctuations that have these characteristics as ‘thermo-

dynamic fluctuations’. In fact, fluctuations being thermodynamic furnishes an ap-

proximate justification of AP because the value of f for a system in equilibrium is

approximately constant and close to 〈 f 〉. Following Callender’s ([2001]) sage ad-

vice of not taking TD too seriously, one can accept an approximate justification

of AP as sufficient. In this vein Hill ([1987], pp. 9–10) submits that the validity

of the identification of observable values with ensemble averages is legitimate only

when the fluctuations of f away from 〈 f 〉 are small, and Schrödinger ([1989], p. 35)

declares: ‘[…] mean values, most probable values, any values that occur with non-

vanishing probability—all become the same thing’.

It cannot be taken for granted that fluctuations are thermodynamic. Whether the

fluctuations in a given situation exhibit this pattern depends both on the system’s

dynamics and the macro-variables. While the fluctuations in some applications of

GSM turn out to be thermodynamic as expected, there are systems in which large

fluctuations turn out to be more likely than small fluctuations. Fluctuations in the

Kac ring with the standard macro-state structure of the number of black and white

balls as discussed by Lavis ([2008]) are not thermodynamic. In our (Werndl and

Frigg [2017a]) we also discuss two models in which fluctuations are not thermody-

namic. The first is the baker’s gas with a macro-variable V that takes integer values

on cells of the standard Boltzmannian partition; the second is the finite Ising model

for certain termperature values with the internal energy as a macro-variable. And in

our (Werndl and Frigg [unpublished]) we show that the same result also occurs in

the six-vertex model for certain temperature values. That fluctuations are thermody-

namic has to be ascertained on a case-by-case basis.

What is the status of AP vis-à-vis bare probabilism? There are two options. As we

have seen above, bare probabilism insists that the quantitative content of statistical

mechanics is exhausted by the statistics of observables and that nothing else should

be added to it. This means that AP has no place in the theory and has to be located

somewhere else. The question is where. A plausible answer is to interpret AP as a

bridge law that is invoked when GSM is connected to TD. Bridge laws relate two

different theories to each other by establishing a relation between the terms of the

theories, typically with the aim of reducing one theory to the other.22 A classical ex-

ample of a bridge law is the law in the kinetic theory of gases that says that temper-

ature is proportional to the mean kinetic energy of the molecules, thereby establish-

ing a link between a mechanical concept (kinetic energy) and a thermodynamic

quantity (temperature). AP can be thought of as a bridge law of that kind. While

not being part of GSM proper, it then nevertheless establishes a link between con-

cepts in GSM and TD.

This is a workable position, but it is important to get clear on the commitments

that this implies. Locating AP outside GSM might suggest that it is a ‘voluntary

22For a discussion of reductionism and bridge laws, see (Dizadji-Bahmani et al. [2010]).
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addition’ that can be invoked when it is convenient, but ignored otherwise. Those

who reject an understanding of SM as a foundational project for TD would then

be free to ignore AP altogether. Unfortunately there is rather less freedom of choice.

As noted previously, it is common practice in applications to calculate a certain

quantity using the averaging methods of GSM and then plug it into thermodynamic

equations. For this to be legitimate, the requisite bridge law, namely, AP, has to

hold. So bare probabilism must ensure that AP holds whenever GSM is used in tan-

dem with TD. Adding this proviso to bare probabilism gives what we call ‘qualified

probabilism’.

An alternative is to take statements in textbooks at face value and regard AP, in

Chandler’s words, as a primary assumption of statistical mechanics (see Section 2).

On such an interpretation AP is an integral part of GSM. We call this position ‘fluc-

tuation probabilism’. Fluctuation probabilism has to restrict dynamical laws and ob-

servables that are allowable in GSM to those that produce thermodynamic fluctua-

tions. Restrictions of this kind are common: fields in electrodynamics must be twice

differentiable and forces in Newtonian mechanics must be Lipschitz continuous for

unique solutions to exist. However, as we will see later, it is less than clear what con-

ditions a system must satisfy for fluctuations to be thermodynamic and so making

this condition part of GSM introduces an certain degree of indeterminacy about

the theory’s content.

However, at the end of the day the choice between fluctuation probabilism and

qualified probabilism is an aesthetic matter. Both accounts have to come to terms

with fluctuations; they differ only in where they locate this problem. The main chal-

lenge for both approaches is that they are based on r-universalism. In the next sec-

tion we show that r-universalism is false and that r gives correct probabilities for

events to occur at all times only if the system satisfies certain conditions.

7. Scrutinizing r-Universalism

All versions of probabilism presuppose r-universalism. Unfortunately, that doctrine

is not true and r can be used to calculate probabilities of events only under certain

circumstances (that is, Equations (3) and (5) have restricted validity). The nature of

these restrictions depends on how fluctuations are interpreted. In this section we dis-

cuss two interpretations and spell out their implications.

On the first interpretation we consider the fluctuations that arise in the same sys-

tem when we observe its behaviour over time. This amounts to tracking a system

over an extended period of time (usually one considers the limit t → ∞) when the

system starts in a particular initial condition x0 at time t p 0 and its state evolves

under ft. The system’s instantaneous state at any time t then is x(t) 5 ft(x0). r-

universalism asserts that for all R ⊂ X and all times t, Equation (3) gives the long-

run fraction of time that x(t) is in R as time goes to infinity and Equation (5) gives

the correct probability for fluctuations of certain magnitude to occur.
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Unfortunately this is not the case. The problem is one that has been described by

Lawden ([2005], pp. 60–1) and Sklar ([1993], pp. 193–4). The dynamics of the sys-

tem can have conserved quantities. In that case, the state space X decomposes into

invariant subsets, that is, sets that are mapped onto themselves under the dynamics

of the system. A trajectory then remains confined to the subset in which its initial

condition lies and it never wanders off into other invariant subsets. This, however,

invalidates Equation (3), and with it Equation (5). To see how this happens assume

that X decomposes into two invariant subsets X1 and X2, and that r(X1) ≠ 0 and

r(X2) ≠ 0.23 Assume that the initial condition x0 of the system whose behaviour

we are tracing over time lies in X1. Because X1 is an invariant set, the system will

then never leave X1 and the probability of the system’s state ever being in X2 is zero.

Yet r assigns a non-zero probability to the system being in X2. So r makes wrong

predictions. As a result also the predictions for fluctuations can be wrong. The func-

tion f may be such that it assumes certain values only in X2 and hence fluctuations

away from the mean of a certain magnitude only occur when the state of the system

is in X2. Equation (5) assigns a non-zero probability to such fluctuations and yet the

system never exhibits them.24

One way of avoiding these difficulties is to require that the system’s dynamics is

such that it can access all parts of X. In deterministic systems this is tantamount to

requiring that the system is ergodic.25 Some systems are of this kind: for all we know

the hard ball gas is ergodic. But other systems violate these conditions. The Kac ring

is a case in point. The uniform distribution on its state space is a Gibbsian equilib-

rium, and yet its state space has an ergodic decomposition, meaning that it consists

of a number of invariant subsets (Lavis [2005]). This is the situation we described in

the previous paragraph, and all the problems we mentioned arise in the Kac ring. An-

other example where the same problem arises is a gas of non-interacting particles in a

multi-mushroom-box (Werndl and Frigg [forthcoming]). Furthermore, although rig-

orous proofs are currently out of reach, it is generally expected that many fluids and

solids will not be ergodic, which, again, leads to the same difficulties (Uffink [2007],

p. 1017).

A possible response is that requiring ergodicity is asking for too much. All that is

needed is that if a system is ‘trapped’ in a certain part of the state space, this does not

23The argument generalizes trivially to any number of subsets. If the distribution r vanishes on the invar-
iant subsets, a similar argument can be made by choosing X1 (and X2) to be a collection of invariant sub-
sets with r(X1) ≠ 0 (and r(X2) ≠ 0).

24A referee suggested that this problem has an ‘easy and obvious remedy’, namely, to ‘restrict the prob-
ability distribution to the relevant invariant subset that describes the system with a particular value of the
conserved quantity’. Such restrictions would lead to distributions that are very different from the ones
usually considered in GSM and, as far as we can tell, such restrictions are not carried out in the practice of
GSM. One reason for this is that the invariant subsets are usually not known, which makes it impossible
to specify a suitably restricted probability distribution. Furthermore, invariant sets can be of measure
zero, and then the restriction procedure provides no meaningful results.

25 For Markov processes (the kind of stochastic dynamics that is usually assumed in the context of stochas-
tic GSM) it amounts to requiring that the Markov process is irreducible. The standard stochastic dynam-
ics of the six-vertex model, for instance, is an irreducible Markov process.
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influence the probabilities of fluctuations. This happens just in case the proportion of

states for which f assumes a particular value is the same in each invariant subset. In

this case the p(d) are the correct probabilities even if the system cannot access the

full state space. In other words, what is needed is not full ergodicity but the weaker

condition that the invariant sets of the dynamics (if any) and the function f are at-

tuned so as to ‘mask’ the fact that the system is trapped in certain invariant sets.

We call this the ‘masking condition’. Under what circumstances does the masking

condition hold? As far as we can see, there are no general criteria to decide whether a

system has this property. In fact, whether a trapping will be masked in this way de-

pends both on the time evolution ft and the macro-variable f, and one will have to

look at each f 2 ft pair to come to a verdict. A positive result can in no way be taken

for granted. If a system is not ergodic, there will always be manymacro-variables for

which the masking condition fails.

The root of the difficulties we encountered so far (and which led to the formulation

of the masking condition) was the adoption of an interpretation of D(t) as the fluctu-

ation one observes on a single system when one traces the system’s state over time.

In the light of these difficulties one might deem this an unsuitable choice and suggest

that an alternative notion of fluctuation should be used. This alternative interpretation

emerges from Gibbs’s ([1981], p. v) original description of an ensemble:

We may imagine a great number of systems of the same nature […] And here
we may set the problem, not to follow a particular system through its succession
of configurations, but to determine how the whole number of systems will be
distributed among the various conceivable configurations and velocities at any
required time.

This suggests thinking of an ensemble like an urn of balls. An ensemble is a large

collection of (imaginary) systems and making an observation amounts to drawing

one system out of the ensemble. The distribution r then specifies the probability

for drawing a system whose state x lies in a certain part of the state space in much

the same way in which the fraction of red balls in the urn specifies the probability

of drawing a red ball. If the drawn system is in state x, the observed value of f is

f (x), and hence r also specifies the probabilities for certain values of f.

Gibbs ([1981], p. 163) relied on this idea when he observed: ‘What we know

about a body can generally be described most accurately and most simply by saying

that it is one taken at random from a great number (ensemble) of bodies which are

completely described’. This way of thinking about ensembles is widespread in the

physics literature. Hill ([1987], pp. 4–5) says that ‘if a system is chosen at random

from the ensemble at time t, the probability of finding the phase point representa-

tive of its dynamical state in dp dq about the point p, q is f  dp dq’, where Hill’s f

stands for the Gibbsian r. Tolman ([1979], p. 47) describes the density r as giving

the probability that ‘the phase point for a system chosen at random from the ensem-

ble would be found at time t to have the specified values of the q’s and p’s’. Lawden

([2005], pp. 56–7) states that ‘the frequency with which a particular state is found in
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the ensemble is proportional to its associated probability [that is, r]’. Agarwal and

Eisner ([1988], p. 7), Isihara ([1971], p. 21), Jelitto ([1989], pp. 192–3), Penrose

([2005], pp. 97–8), Reif ([1985], pp. 47–55), Schrödinger ([1989], p. 9), and Thomp-

son ([1972], p. 56) make statements to the same effect.

If one understands r as the probability of finding a system randomly drawn from

the ensemble in state x, Equation (3) is true by definition. One can then interpret the

f (x(t)) in the definition ofD(t) as the result one gets when drawing a system from the

ensemble at random at time t (rather than as the observation of f on the same system

at different times). Under this interpretationD(t) is the statistical fluctuation one finds

in consecutive random draws. Since consecutive draws are by assumption indepen-

dent from one another, they do not depend on initial conditions. Hence the problem

with invariant sets vanishes and Equation (5) is true under all circumstances.

This is an elegant move, but it raises a serious question. In laboratory experiments

we observe the same system at consecutive times rather than drawing different sys-

tems out of an urn at random. This difference is significant because successive ob-

servations on the same system are generally not independent in the way in which

draws from an urn are, and so it remains unclear what we can infer about laboratory

experiments from GSM under an ‘urn interpretation’.

One could respond to this worry by emphasizing the qualification that observa-

tions on the same system are generally not independent and argue that the systems

of interest in GSM fall into a special class of system for which independence holds.

The systems to which GSM applies, so the argument goes, are such that they effec-

tively re-randomize between measurements. Kittel ([2004], p. 7) discusses this issue

and expresses confidence that this happens in the sort of systems we are interested in:

[…] the complex systems with which we are dealing appear to randomize them-
selves between observations, provided only that the observations follow each
other by a time interval longer than a certain characteristic time called the relax-
ation time. The relaxation time describes approximately the time required for a
fluctuation (spontaneous or arranged) in the properties of a system to damp out.

How can one characterize systems that have this property? The randomization that is

needed to get the position off the ground is of the following kind. Let A and B be two

arbitrary subsets of X. We write ‘At’ to indicate that the state of the system at time t

was in A, and likewise for ‘Bt’. The independence condition needed then is this:

there exists a timespan t (the relaxation time) so that for all A, B ⊆ X we have

p(Bt2 jAt1 ) 5 p(Bt2 ) provided t2 2 t1 ≥ t. That is, draws at later times have to be prob-

abilistically independent of draws at earlier times provided that the distance between

them is more than the relaxation time (which is presumed to be relatively short).

This condition can be true only if the system is mixing, and even then the random-

ization can be achieved only in the infinite limit and never over finite times.26 More-

over, mixing implies ergodicity and, as we have already seen, many systems in

26See (Berkovitz et al. [2006]; Werndl [2009]).
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statistical mechanics are not ergodic. A fortiori they are not mixing and therefore do

not randomize in the required manner.

One might reply that we have required too much by stipulating that p(Bt2 jAt1 ) 5

p(Bt2 ) has to hold for all subsetsA andB ofX. One can prove that mixing is equivalent

to the condition that for all functions f ∈ L2(X ) (where L2(X ) is the space of square

integrable functions on X ) the sequence of ∫X f (ft(x))dm converges to ∫X f (x)dm as

t tends towards infinity (Katok and Hasselblatt [1993], p. 152). This shows that re-

quiring that the system mix is tantamount to requiring that independence hold with

respect to all functions f. But this may well be too strong. What is needed to make

GSM work is only the weaker assumption that independence holds with respect

to certain selected functions that are deemed relevant in a given context. Let f be

a function on X. We then say that a system is ‘f-independent’ if and only if

∫X f (ft(x))dm converges to ∫X f (x)dm as t tends towards infinity. The relevant concept

then is f-independence rather than mixing. Furthermore, one might argue that it is

unnecessary to require that complete independence is reached; all that is needed is that

correlations relax belowa levelwhere they becomenegligible. So it suffices to require

that systems are approximately f-independent for certain selected variables f.

Restricting the application of GSM to systems that are approximately f-

independent for a few selected variables is a successful move as far as it goes, but

how far is this? The problem is that reaching approximate independence in finite

time is a relational property that a macro-variable f possesses with respect to a par-

ticular time evolution ft, and whether or not independence holds depends on both

f and ft. On this approach one would have to check every f 2ft pair before being

licensed to apply GSM.

A radical way around this problem is to try to vary the setup and endeavour to

produce an ensemble empirically, for instance by destroying the system after every

measurement and recreate it in a new state (or, less dramatically, by interrupting its

time evolution and resetting its state). In this way one could, at least in principle,

produce a large number of independent systems that, taken together, approximate

a Gibbsian ensemble.

There are doubts that this will work.27 The systems produced in this way would

approximate the Gibbsian ensemble only if the process of ensemble preparation was

such that the systems ended up being produced according to the measure of the

ensemble. As Leeds ([1989], pp. 329–33) and Werndl ([2013], pp. 473–6) point

out, there is no reason to believe that the repeated preparation of a system in a certain

macro-condition will be such that the collection of all systems satisfies the relevant

Gibbsian distribution (for example, the micro-canonical distribution). In fact, de-

pending on the details of the process (who prepares the system and how) different

distributions could be obtained. The best one can hope for is that the resulting

27Furthermore, this project is of questionable legitimacy because in doing so one gives up the aim of de-
scribing the evolution of single systems, which is important in statistical mechanics.
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distribution is absolutely continuous with r (that is, it agrees with r on all sets of mea-

sure zero), but this allows for empirical outcomes that diverge significantly from r.

There is a temptation to reply that this is an artefact of the state preparation and

that the time evolution of the system irons out the discrepancies between the distri-

bution resulting from the state preparation and the ensemble distribution. So rather

than saying that one observes a certain distribution r when repeatedly preparing a

system, one should be committed to the claim that one finds r when repeatedly pre-

paring a system and letting it run for a fixed time t (which is long enough for the

system to ‘settle down’). Unfortunately, this does not solve the problem either, at

least not in general. For it to be the case that all initial distributions28 converge to

the ensemble distribution, the dynamics has to be mixing (Werndl [2009]), which

gets us back to all the difficulties with mixing that we have already discussed.

In sum, the Gibbsian r can be used to calculate correct fluctuation probabilities

only if the time evolution ft and the macro-variable f work in tandem to guarantee

that the masking condition is satisfied or that f-independence holds at least approx-

imately. If one of those conditions holds, then the fluctuation probabilities as given

in Equation (5) truthfully reflect a system’s dynamics and can be used to assess its

equilibrium behaviour.

Unfortunately, both conditions are strong and cannot be taken for granted. And the

problem is not one that can be brushed aside as ‘irrelevant for all practical purposes’.

The possibility of these conditions not holding is not merely a remote mathematical

possibility that is inconsequential for applications; there are examples where these

conditions do fail. An example where the masking condition fails is the Kac ring.

Lavis ([2008], p. 686) shows that there are solutions that stay only 46.58% of their

time in a certain region X1 of the state space (the Boltzmannian equilibrium region)

where Equation (3) would predict that it should stay in that region 99.999% of the

time. If one now chooses an f so that it assumes one value in X1 and another value

in the rest of the phase space, then the masking condition is violated. The condition

also fails in a gas of non-interacting particles in a multi-mushroom boxwith a macro-

variable indicating whether the solution moves back and forth between the first and

second mushroom or between the second and third mushroom (Werndl and Frigg

[forthcoming]). These systems are not ergodic, and so one would expect such fail-

ures. Since other systems are likely to be in the same category, onewould expect sim-

ilar failures in other systems too.

The condition of approximate f-independence is violated whenever a system with

a continuous dynamics is observed in intervals that are so short that no independence

is achieved, not even approximately. The issue is that if a system is continuous, the

spreading out of regions in phase space happens continuously and hence indepen-

dence can be achieved only after a sufficiently long time period has passed. This

28All distributions that are absolutely continuous with respect to the Lebesgue measure.
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is not just a theoretical possibility. In fact, relaxation times can be observed experi-

mentally, which involves observing the system in intervals that are shorter than the

time needed for them to randomize. In such a situation Gibbsian probabilities will not

be correct.

There is a legitimate question how much weight these examples bear. Due to the

mathematical complexities of the systems usually studied in GSM, explicit results

are available only for simple systems like the Kac ring and the mushroom gas.

Whether, and under what circumstance, masking and approximate f-independence

hold in more realistic systems is an interesting question that deserves further atten-

tion. And the question is not merely one of doing ‘routine background checks’ that

one confidently expects to return the right verdict. As we noted above, both condi-

tions are highly non-trivial and we should expect them to fail in some systems. In-

deed, in some systems both conditions fail. This happens, for instance, in the Kac

ring when periods of time are considered that are shorter than the relaxation time

(and we associate the system’s thermodynamic equilibrium values with the values

of f that the system assumes most of the time). Surprisingly, GSM and AP still

work in this particular case even though probabilism (in any of its forms) fails,

and hence offers no justification for AP. This suggests that probabilism does not pro-

vide a satisfactory general interpretation of GSM.29

8. Conclusion

We reviewed different interpretations of GSM and came to the conclusion that

among the currently available interpretations qualified probabilism and fluctuation

probabilism are the most promising options. However, in their original formulation

they were based on r-universalism, which is false. Themeasure r gives correct prob-

abilities for events to occur at all times only if the system under study satisfies the

masking condition or the f-independence condition. So probabilism (of either vari-

ety) is true only if at least one of these conditions holds.

If this is the case, GSM allows us to calculate the probability of fluctuations. But,

as we have seen above, this does not ipso facto imply that fluctuations turn out to be

thermodynamic. The account can give the right fluctuations probabilities, but the

fluctuations can be of the wrong kind, for instance in that large fluctuations can turn

out to be more likely than small fluctuations. This is not merely a remote conceptual

possibility. As noted in Section 6, there are systems in which fluctuations are not

thermodynamic and in which AP fails.

Finally, it is crucial to note that not all justifications of AP have to be given in the

framework of the fluctuation approach. There is a temptation to regard the fluctuation

approach as the ‘natural’ interpretation of GSM, and then discuss the validity of AP

only within the fluctuation approach (where the question comes down to whether

29For our explanation of why AP works in these cases see our (Werndl and Frigg [unpublished]).
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fluctuations are thermodynamic). This temptation must be resisted. There are cases

where AP holds and the fluctuation approach fails, and narrowing our focus on the

fluctuation account makes us blind for such cases. The Kac ring with the standard

magnetization macro-variable is a case in point. As we have seen above, the Kac ring

satisfies neither the masking condition (for short time periods) nor f-independence

and yet it turns out that 〈 f 〉 is equal to the equilibrium value. Intuitively, this is

the case because the various regions where f takes values deviating considerably

from the equilibrium value are distributed symmetrically over the state space and

therefore ‘cancel out’ when the average is calculated. Hence, if we are interested

in justifying AP, we must sometimes look beyond fluctuations, and indeed beyond

probabilism.
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