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Climate change adaptation is largely a local matter, and adaptation planning can benefit
from local climate change projections. Such projections are typically generated by ac-
cepting climate model outputs in a relatively uncritical way. We argue, based on the
IPCC’s treatment of model outputs from the CMIP5 ensemble, that this approach is un-
warranted and that subjective expert judgment should play a central role in the provision
of local climate change projections intended to support decision-making.

1. Introduction. It is now widely accepted that global warming is real and
in large part due to human activities.1 But the big picture of increasing global
average temperature reveals few specifics about how climate changewill im-
pact human lives and natural ecosystems at a local scale. Regional climates
are changing, and will continue to change, in their own unique ways. Resi-
dents of one region may experience more summer droughts, while others on
the same continent experience fewer. One city may face higher storm surges;
another, more severe heat waves; a third, reduced monsoon rains.
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1. The evidence is presented in the most recent report from the Intergovernmental Panel
on Climate Change (IPCC; Stocker et al. 2013); the consensus is documented in Oreskes
(2007).
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To some degree, we can adapt to these changes by aligning our behavior,
institutions, and infrastructure with the new reality. Farmers can plant dif-
ferent crops, foresters can adjust their management plans, a water company
can add a new reservoir, a city might strengthen its flood protection, centers
for disease control can prepare for migrating vectors, city heath departments
can build cooling centers for vulnerable residents, and insurers (and reinsur-
ers) can recalculate their prices.

Adapting, however, requires insight into where the local climate is headed.
Is it worth investing in a new irrigation system? That depends on whether
recent dry conditions are the new normal or just a streak of bad luck. Longer-
term plans that are expensive to change once implemented would better
be informed by projections further into the future. Construction of Britain’s
new high-speed train infrastructure, for instance, is set to begin in 2017. We
would like to design the tunnels to avoid overheating during late twenty-
first-century summers, projected to be warmer and drier than today’s and with
more intense hot weather events (High Speed Two Limited 2013). Several
coastal sites in the United Kingdom are currently being evaluated for new-
build nuclear power stations; the choice of site, physical design, and adap-
tive management plan are sensitive to long-term projections of local sea-
level rise (Wilby et al. 2011). And similar questions arise, of course, in
other parts of the world.

Our topic is how climate science can best inform these local adaptation
decisions.We begin by reviewing a standard approach to local climate change
projections (sec. 2) and considering some reasons for caution (sec. 3). An
alternative emerges from a sideward look at how scientific knowledge has
been incorporated into decisions on issues such as dam safety and regula-
tion of toxic substances. The key idea is to introduce a process of struc-
tured expert elicitation (sec. 4). We discuss specific issues that may arise
in implementing such a procedure for local climate change adaptation de-
cisions (sec. 5) and then draw some conclusions (sec. 6).

2. Answers Offered. Science-based information and advice that aim to in-
form local adaptation decisions go by the general name climate services.
The goods on offer include data sets and climate forecasts (sometimes
called products), as well as guidance on how to approach and think about
adaptation planning (decision support). A variety of organizations currently
develop and deliver climate services, including private consultancies, non-
governmental organizations, universities, and government agencies.2

While climate services products vary in what exactly they offer and in
how the offerings are presented, the methodology behind them is, in broad

2. For a brief overview of the state of climate services in the United States, see the
American Meteorological Society’s (2015) policy statement on climate services.
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strokes, often the same: start with output from general circulation models
(GCMs), which simulate the whole climate system at a coarse resolution;
then use one or more downscaling methods, which interpolate the GCM
output to give finer details over the region of interest; finally, downscaled
projections may be combined with local historical data. Methods diverge
in their selection of GCMs, their approach to downscaling, and how they
manage and communicate the uncertainties that pile up along the way.

An example of such a product offered by a government agency is The
United Kingdom Climate Impacts Program’s UKCP09 project. The project
offers a set of quantitative projections for local variables such as the change
in temperature of the warmest summer day in London or the change in total
precipitation during the wettest winter season in Tewkesbury.3 These pro-
jections, at the scale of a 25 km grid, can be directly accessed on UKCP09’s
website in the form of probabilities for different timescales (2020s/2050s/
2080s) and alternative emissions scenarios (high/medium/low). The projec-
tions are advertised as relevant for practical decision support, and “worked
examples” show how they should be used to tackle concrete problems such
as energy use and sustainability in school buildings, overheating risk for
buildings, and flood management policy (Met Office 2009).

Projects of this kind are not restricted to the United Kingdom. A larger
project called weADAPT provides small-scale information based on the
CMIP5 archive of GCM runs at particular station locations and using a sta-
tistical downscaling method.4 The weADAPT portal describes some in-
depth case studies for use and interpretation of the data. For example, one
case study looks at Bagamoyo, Tanzania, and offers an answer to the ques-
tion, “What do current trends in temperatures, rainfall and mean sea level,
and medium- and long-term projections, suggest are the most serious cli-
mate risks that government officials in Bagamoyo district need to address?”
(Besa 2013). Cal-Adapt offers adaptation information for California, Cli-
mate Wizard for the entire United States, ClimateImpactsOnline for Germany,
and the list could go on.5 An ever-increasing number of private consultan-
cies also offer similar climate change products, usually based on publicly
available data.6

In sum, questions about future local climate are, today, mostly answered
by using state-of-the-art GCMs combined with downscaling.

3. “UKCP” stands for United Kingdom Climate Projections, and “09” indicates that it
was launched for public use in 2009.

4. CMIP5 is the fifth instantiation of the internationally coordinated Coupled Model In-
tercomparison Project, which compares the results of different GCMs.

5. For information see, respectively, California Energy Commission (2016), The Nature
Conservancy (2009), and Potsdam Institute for Climate Impact Research (2014).

6. An example is JBA Consulting, North Yorkshire, UK.
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3. Do the Answers Provide Actionable Information?. Its popularity not-
withstanding, this method has questionable credentials as a provider of ac-
tionable local information. This conclusion can be reached from at least
three different directions. We comment only briefly on the first two: detailed
analysis of individual projects, and recognition of actual predictive failures.
Our main focus here is a third path to the same conclusion: making explicit
the implications of the most recent report from the IPCC.

Each climate projection project is based on a set of methodological as-
sumptions, and these can be subjected to scrutiny. Frigg, Smith, and Stain-
forth (2013, 2015) analyze the foundational assumptions of UKCP09 and
argue that the methods used do not warrant treating model outputs as
decision-relevant projections. Similar in-depth analyses could be carried out
for other projects. Needless to say, we can only speculate about the outcomes
of such an exercise, but given the arguments we present below, we would
not expect the verdicts on other projects to differ significantly.

Regarding the success of predictions, Mearns (2014) reports telling re-
sults from a study evaluating models for the purpose of predicting the future
regional climate of North America.Mearns and colleagues compared a number
of variations on the methodology described above, in each instance combin-
ing one of four GCMs with one of six regional climate models (simulation-
based downscaling methods). They evaluated each model pair by comparing
its simulation of 1980–2005 with the weather data of that period. Two such
model evaluation exercises focused on the North American Monsoon in the
Southwest United States and Northern Mexico, and summer precipitation
in the Northeast. A surprising result was that the model pair that performed
best on the North American Monsoon performed worst on Northeast precip-
itation, and few model pairs performed respectably on both.

The result suggests that local climate projections are more sensitive to the
choice of models than previously supposed. The problem is compounded by
the difficulty of identifying any factor (or set of factors) in the models that
explains the differences in performance. Furthermore, past success is not
necessarily a guide to future success (Reifen and Toumi 2009), making it
difficult to learn from a model’s success in reproducing past data. This sug-
gests that interpreting regional model outputs as decision-relevant projec-
tions is more problematic than previously assumed. In particular, it raises
doubts about using any single model, or even the same ensemble or ensem-
ble weighting, for general-purpose national climate projections where mul-
tiple regions, variables, and timescales are of interest.

Our main argument, however, is based on the most recent IPCC report.7

The report includes global mean temperature projections for 2100 with a

7. Our discussion is based on Stocker et al. (2013), secs. 12.2.3 and 12.4.1, and Sum-
mary for Policymakers Table SPM.2 (see notes c and d).
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clear assessment of their reliability. They give, for instance, a projection of
2.67C–4.87C of global mean temperature rise relative to the late twentieth
century, supposing the RCP8.5 scenario, which describes an illustrative
“possible future” in which greenhouse gas emissions continue to rise un-
abated. The IPCC quantifies uncertainty in a projection using standardized
language referring to likelihood intervals, for example, “virtually certain”
(>99%), “very likely” (>90%), or “more likely than not” (>50%) (Stocker
et al. 2013, Box TS.1, Technical Summary). The 2.67C–4.87C projection is
qualified as “likely,” which means that there is a 66%–100% chance of the
real-world outcome falling into that range, given the scenario.

The range 2.67C–4.87C is arrived at by looking at the CMIP5 ensemble
of climate models: a set of state-of-the-art models that have each run the
RCP8.5 scenario and supplied a value for the projected temperature change
at 2100. This set of single values is then used to fit the parameters (mean
and standard deviation) of a Gaussian probability distribution. The range
2.67C–4.87C is the interval that symmetrically spans 90% of that distribu-
tion. In the “model world,” therefore, this range is an estimate of the interval
into which model runs chosen from some underlying distribution will fall
90% of the time. In IPCC terminology, this interval would be referred to
as a “very likely” range.

The IPCC authors’ next step is to note that even state-of-the-art climate
models share systematic biases (Knutti et al. 2010). All models are limited
by the same computational constraints, they are based on the same limited
set of parameterizations, and they are calibrated to reproduce features of
twentieth-century climate that may be less relevant for twenty-first-century
developments. For these reasons, when translating model-world findings
into real-world projections, the IPCC authors downgrade the model-derived
“very likely” uncertainty quantification for the range 2.67C–4.87C to “likely.”
Thus, while there is a >90% probability that a state-of the-art model run
will result in a temperature change between 2.67C and 4.87C, there is only
a >66% chance—in the authors’ judgment—that the real climate system
will produce this outcome. So the IPCC judges that there is a up to
an additional 24% probability that the actual climate outcome (for the
RCP8.5 scenario) will be outside the central range of the models and that
we will experience something entirely different than what the models
suggest. This is a clear indication that climate scientists do not believe
the raw outputs of model ensembles to represent real-world probability
distributions.

The reassignment of probabilities described above is based on an infor-
mal process of expert judgment: the discussions and iterations between au-
thors during the long writing and review stages of the report. We commend
the forthrightness with which the IPCC acknowledges the role of expert
judgment in their assessment process. At the same time, we recognize some
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drawbacks to the (relatively unstructured) way in which they go about it
(details below). The main conclusion we draw from the example is that
the IPCC’s own results and methods contain the assertion that there is sig-
nificant uncertainty about climate projections, and that this uncertainty is
best quantified by appeal to expert opinion.

This conclusion should not be limited to global mean temperature. In-
deed, global mean temperature is the variable in which there is (rightly)
the most confidence about climate models’ ability to represent relevant pro-
cesses.8 So for the local-scale variables that matter to adaptation planners,
we would expect to see a probability downgrade of at least the same mag-
nitude as the one given for global mean temperature. In effect the 24% rep-
resents an imprecise lower bound to our uncertainty about other variables.9

The conclusion we draw from this is that the case for quantifying uncertainty
through expert judgment is even stronger when it comes to local-scale var-
iables, and that uncertainty in local climate projections should be assessed
through a suitably structured process of expert elicitation. This conclusion
stands in stark contrast with current practice, where model results are often
interpreted directly as a probability distribution of future real-world cli-
mate outcomes (this happens, e.g., in UKCP09).

4. Lateral Knowledge Transfer. The climate services sector faces a situ-
ation in which decisions call for scientific input, but there is severe uncer-
tainty about the modeling on which scientists can rest their advice. Climate
change adaptation, however, is not the only field that satisfies this descrip-
tion. Indeed, the situation is comparable in many policy-relevant areas of
science and engineering, for example, toxicology, public health, and nu-
clear safety. To illustrate what has become a standard approach to the prob-
lem, we now have a look at a concrete case in environmental regulation.
Our claim is that the example will illustrate important lessons for climate
services.

Zoning plans for sites that use or manufacture large volumes of toxic
substances typically include a buffer zone in which no housing develop-
ment can occur. How large should the buffer zone be? A political process
can determine the acceptable level of risk for residents of neighboring de-
velopments, but what distance limits the risk to this level? The Ministry of

8. See, e.g., Stocker et al. (2013, Technical Summary, 81): “Model agreement and con-
fidence in projections depends on the variable and on spatial and temporal averaging,
with better agreement for larger scales. Confidence is higher for temperature than for
those quantities related to the water cycle or atmospheric circulation.”

9. In passing we note that levels of uncertainty are not expected to decrease significantly
in the short and medium term, ever-increasing computational resources notwithstanding
(Maslin and Austin 2012; Knutti and Sedlacek 2013).
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Housing, Physical Planning and Environment of the Netherlands sponsored
a study to help answer this question for a handful of common industrial
chemicals, including chlorine, ammonia, and hydrogen chloride (Goossens
et al. 1998).

The key uncertainties concerned quantities for which there are no direct
empirical observations: concentrations and exposure times that are fatal for
humans. The standard approach to estimating those quantities models hu-
man toxicology using data from animal studies, treating the laboratory an-
imal as an analog model for humans, and extrapolating concentrations and
exposure times by adjusting for body weight, lung capacity, and so on. This
modeling exercise delivers answers, but how much can they be trusted? Hu-
mans are not 70 kg rodents, and different species may react through differ-
ent physiological pathways altogether. Moreover, extrapolation results are
sensitive to debatable scaling assumptions. And of course, there are no data
against which to test the resulting predictions (if there were, these would
have already resolved the issue).

Furthermore, a sole reliance on animal studies fails to take advantage
of other relevant sources of knowledge. For many chemicals, there are
well-developed, qualitative toxicological models that describe metabolic
processes, functional changes in the impacted organs, and clinical express-
ion of these organ-function disturbances. There may also be quantitative
chemical and biological understanding of their “kinetics” within the body:
rates of absorption, distribution, metabolism, and elimination. This knowl-
edge is relevant to estimating the required concentrations and exposure
times and to judging the reliability of the extrapolations from animal stud-
ies, but there is no established quantitative method of feeding everything
into a hopper and turning the crank for an all-things-considered best esti-
mate.

To integrate the available evidence into actionable findings, the experi-
menters recruited 27 toxicologists from industry, academia, and government
(about five experts per chemical). The experts reviewed the available re-
search and provided, through a carefully structured interview, their all-
things-considered subjective judgments for the required concentrations
and exposure times. The interview process, or elicitation, draws on a large
body of research on the formatting and sequencing of questions to reduce
overconfidence and minimize the effects of cognitive biases. In this partic-
ular case, the experimenters also developed a set of seed questions (with
known answers) to evaluate expert competence, and then pooled judgments
mathematically, giving experts with higher marks on the seed questions
greater weight, yielding a single best-estimate dose-response curve for each
chemical. From this, regulatory authorities could derive the buffer zone
depth that limits the risk of lethal exposure to the safety standard previously
set.
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The study just described is an example of structured expert elicitation
(SEE), a family of methods designed to incorporate expert knowledge into
risk management and strategic and policy decisions. SEE has spread from
early applications in defense planning and aerospace engineering to wider
use in the nuclear sector (Cooke 2013) and in support of regulatory and other
policy decisions (Aspinall 2010; Morgan 2014), especially environmental
regulation, food safety, public health, and disaster management. There are a
variety of methods; some include deliberation between experts, others (like
the above) elicit judgments separately and then aggregate the results, and yet
others report a full range of opinion, disagreements and all (for wide-ranging
reviews of applications and discussions of the method, see Cooke and Goo-
ssens 2000; Goossens et al. 2008; Martini and Boumans 2014).

5. Changing Paradigm. In section 3 we argued that there are severe un-
certainties in regional climate projection, and that these uncertainties are
best assessed via expert judgment. Section 4 looked at an analogous case
of environmental planning where SEE is used to assess uncertainties and
synthesize different sources of knowledge into actionable results. Putting
these two strands of argument together leads to our core suggestion: that
all local climate change projections intended to support decision-making
should be produced through a process of SEE.

To be clear, SEE does not replace modeling exercises on this approach.
Rather, the suggestion is to quit regarding downscaled GCM outputs as
the only (or the privileged) source of information and to use model outputs
alongside other sources of information. Experts have much to draw on, in-
cluding physical understanding of large-scale processes such as the green-
house effect, energy conservation principles (sometimes violated by model
behavior), historical data sets, projections based on simple models and sta-
tistical methods, and reconstructions of climate change in the distant past.
Knowledge about model development is also essential, including under-
standing of the effects of grid-scale resolution, of including or excluding
particular processes (or including them only through ad hoc parameteriza-
tion), of mathematical idealizations of conceptual relationships, and of the
numerical approximations required to process the mathematical idealiza-
tions. Simulations of the recent past have also been statistically compared
to corresponding observations and plausible reasons for inaccuracies debated.
The relative strengths and weaknesses of alternative model formulations are
continually debated as well. All of this knowledge and understanding (and
more) can inform expert judgments about local-scale climate projections.

There are many variations in SEE methodology and a large literature on
its theory and application. If one accepts our proposal, many questions re-
main about how best to implement SEE for climate change projections, in-
cluding how to pick the experts, what constitutes a reasonable quorum of
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relevant experts, and how best to incentivize participation and address con-
flicts of interest. Other questions concern the mathematical formalism used
to encode an expert’s judgments (e.g., precise vs. imprecise probability) and
whether the individual judgments are aggregated (Genest and Zidek 1986)
or presented as a group. Cooke (1991, 2014) and Aspinall (2010), for exam-
ple, promote a version of the former, while Morgan (2014) generally prefers
not to aggregate. We believe that no one method is right or wrong in general.
The challenge is finding the right tool for the job, and this is a task for future
research.

Irrespective of the specifics, there are a few general issues we wish to ad-
dress. One knee-jerk reaction to our proposal may be that results produced
with SEE are too subjective to inform evidence-based policy. This is wrong.
All climate modeling exercises involve subjective decisions that can signif-
icantly influence the outcome, from the selection of models to include in an
ensemble, to the range of parameter perturbations and initial conditions ex-
plored in a sensitivity analysis, to themethod of downscaling (not tomention
the decisions made in constructing a GCM in the first place). By asking ex-
perts to assess and communicate the consequences of these decisions as best
as they can, considering all available information, the proposed approach is
more transparent about the subjectivity, but it is not more subjective. The al-
ternative to SEE is not objective calculation; the alternatives are unstruc-
tured expert judgment (as in the IPCC report) or unstructured nonexpert
judgment (when model-world results are communicated to policymakers
ill-equipped to assess their real-world importance). Reliable objective calcu-
lation of probabilities based on nonlinear model output has been argued else-
where to be infeasible (Frigg et al. 2014). SEE does not guarantee trustwor-
thiness, but it can compensate for (some of ) the (known) inadequacies of
climate models. Echoing a notorious remark of Churchill’s about democ-
racy, we submit that SEE is the worst form of science advising, except for
all those other forms that have been tried from time to time.

Others seem to have reached a similar conclusion and called for the
IPCC assessment process to incorporate SEE (Reilly et al. 2001; Oppenhei-
mer et al. 2007; Shapiro et al. 2010; Yohe and Oppenheimer 2011). IPCC
author teams have so far made their collective judgments through an infor-
mal procedure that does little to address cognitive biases and adverse group
dynamics such as deference to high-status participants. And despite the re-
cent emphasis on “traceable accounts,” the expert judgment process is still
largely opaque to outsiders. Standard SEE practice requires publishing the
interview protocols, raw elicitation results (anonymized), and any proce-
dures for facilitated deliberation and/or mathematical aggregation along
with the final results. We support the incorporation of SEE into the IPCC
process and recommend that the same ought to be done in the case of local
climate projections.
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Even those who agree in principle with our conclusion might worry that
SEE will offer no new insights in the case of local climate change projec-
tions because the outcome is in effect a foregone conclusion. We know, the
objection continues, that models underestimate uncertainty and so SEE will
simply downgrade all probability distributions, the only question being by
howmuch. The worry is misguided. First, even where the need to downgrade
is clear from the start, the degree is not, and the degree matters. Second, this is
not the only thing that can happen. In some contexts (e.g., weather forecast-
ing) models can overestimate uncertainty and experts will sharpen the prob-
ability distribution. In other cases uncertainties are asymmetrical and can
lead to a skewing rather than a widening of the distribution, and in yet other
cases the verdict could be that the distribution is systematically biased and
needs to be “moved.”Moreover, SEE need not enter the process only at the
end of resource-intensive modeling projects, but should also inform their
aims and methodology earlier on. This could constrain the choice of vari-
ables, timescales, and spatial scales for which it is worth trying to provide
decision-relevant model information. Undoubtedly, there are some such lim-
its beyond which projections are simply not plausible; arguably, many cli-
mate services products already exceed those limits. If experts judge large
swaths of model output useless ormisinformative for decision-making, some-
thing has gone wrong at an earlier stage.

6. Conclusion. For the purpose of local climate change decision support,
direct model outputs can be misleading. The IPCC’s published expert judg-
ment about modeled global mean temperature projections implies that prob-
abilities derived directly from model output on smaller-scale variables are
inappropriate inputs to decision-making. Better models and faster comput-
ers cannot by themselves make the problem go away, and provision of local
climate change projections should instead be reconceptualized as a problem
of eliciting expert judgment based on a number of sources including but not
limited to model output. Many open questions remain about how best to im-
plement structured expert elicitation for local climate projections.
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