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1. Introduction

The core posit of Boltzmannian statistical mechanics (BSM)
is that macro-states supervene on micro-states. This leads to a
partitioning of the state space of a system into regions of macro-
scopically indistinguishable micro-states, where by ‘macroscopi-
cally indistinguishable’ we mean indistinguishable with respect
to macroscopic properties such as thermodynamic properties.
These regions are called macro-regions. The largest of these
macro-regions is commonly singled out as the system's equili-
brium region. What justifies the association of equilibrium with
the macro-state corresponding to the largest macro-region?

After briefly introducing the main elements of BSM (Section 2)
and illustrating them with three examples, we scrutinise common
answers that have been given to this question. We find these wanting
both for conceptual and for technical reasons (Section 3). This
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prompts the search for an alternative answer. This answer cannot
be found by revising any of the received approaches, and so we
propose a new definition of equilibrium. While previous approaches
sought to define equilibrium in terms of micro-mechanical proper-
ties, our definition is modelled on the thermodynamic conception of
equilibrium, and also incorporates what has become known as the
‘minus first law’ of thermodynamics (TD) (Section 4).

The new conception of equilibrium is not only free from the
conceptual and technical difficulties of earlier notions, but it also
provides the spring-board for a general answer to our initial
problem. We prove a mathematical theorem which establishes in
full generality that the equilibrium macro-region is the largest
macro-region (in a requisite sense). The proof is mathematically
rigorous and the theorem is completely general in that it makes no
assumptions either about the system's dynamics or the nature of
the interactions between the system's components (Section 5).

We then turn to the question of the approach to equilibrium, to
which there exists no satisfactory general answer. In our account,
this question is replaced by the question: under what circumstances
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does an equilibrium state exists? We point out that for an equili-
brium to exist three factors need to cooperate: the choice of macro-
variables, the dynamics of the system, and the choice of the effective
state space. We then prove a theorem providing fully general
necessary and sufficient conditions for the existence of an equili-
brium state. This theorem changes the way in which the problem
of the approach to equilibrium should be discussed: rather than
launching a search for one crucial factor (such as ergodicity or
typicality), the focus should be on finding triplets of macro-variables,
dynamical conditions, and effective state spaces that satisfy the
conditions of the theorem. This gives the discussion of equilibrium a
new direction (Section 6).

2. Boltzmannian statistical mechanics

We begin with a brief summary of the apparatus of BSM. This is
mainly to introduce notation and state a few crucial results; for
detailed introductions to BSM we refer the reader to Frigg (2008)
and Uffink (2007). We then introduce three examples that will
guide us through our discussion and serve as illustrations of the
general claims we make in later sections. The reliance on three
different examples is not owed to a preference for abundance.
Discussions of BSM have all too often been distorted, and indeed
misled, by an all too narrow focus on the dilute gas. Contrasting
the dilute gas (our first example) with the Baker's gas and the Kac-
ring (our second and third examples) widens the focus and helps
illustrate the general claims we make in later sections.

2.1. The framework of Boltzmannian statistical mechanics

A system in statistical mechanics has the mathematical struc-
ture of a measure-preserving deterministic dynamical system
(X, Zx,ux,Tr). X is the set representing all possible micro-states;
Xy is a o-algebra of subsets of X; the evolution function T, : X — X,
teR (continuous time) or Z (discrete time), is a measurable
function in (t, x) such that T¢, 1, (x) =T, (T, (x)) for all xe X and
all t1,t; e R or Z; ux is a measure on Xx that it is invariant under
the dynamics: uyx(T((A)) = ux(A) for all A € =x and all t.' The solution
through x, x € X, is the function sy : R—X or Sy : Z— X, sx(t) = T¢(X).

At the macro level the system is characterised by a set of macro-
variables {vq,...,v;} (Ie N). These variables are measurable func-
tions v; : X -V, associating a value with each point in X. We use
capital letters V; to denote the values of v;. A particular set of
values {Vy,...,V)} defines a macro-state My, ._y,. We only write ‘M’
rather than ‘My, v, if the specific values V; do not matter. For
now all we need is the general definition of macro-variables. We
will discuss them in more detail in Section 6.1, where we will see
that the choice of a set of macro-variables is a subtle matter of
considerable importance and that the nature and even existence of
an equilibrium state crucially depends on it.

The central philosophical posit of BSM is supervenience: macro-
states supervene on micro-states. This implies that a system's
micro-state uniquely determines its macro-state. This determina-
tion relation will be many-to-one. For this reason every macro-
state M is associated with a macro-region consisting of all micro-
states for which the system is in M. An important yet often
neglected issue is on what space macro-regions are defined. The
obvious option would be X, but often this is not what happens. In
fact, in many cases macro-regions are defined on a subspace Z = X.
Intuitively speaking, Z is a subset whose states evolve into the
same equilibrium macro-state. In the case of a dilute gas with N

T At this point the measure of X is allowed to be infinite (hence there is no
requirement that the measure is normalized).

particles, for instance, X is the 6N-dimensional space of all position
and momenta, while Z is the 6N — 1 dimensional energy hypersur-
face. We call X the full state space and Z the effective state space of
the system. The macro-region Zy, corresponding to macro-state M
relative to Z can then be defined as the set of all x e Z for which M
supervenes on X. A set of macro-states relative to Z is complete iff
(if and only if) it contains all states of Z. The members of a
complete set of macro-regions Zy, form a partition of Z (i.e. the Zy,
do not overlap and jointly cover Z).

The correct choice of Z depends on the system under investiga-
tion, and has to be determined on a case-by-case basis. We return
to this point in Section 6.1. There is one general constraint on such
a choice, though, that needs to be mentioned now. Since a system
can never leave the partition of macro-regions, Z must be mapped
onto itself under T,. Then the sigma algebra can be restricted to Z
and one considers a measure on Z which is invariant under the
dynamics and where the measure is normalized, i.e. 4;(Z)=1.% In
this way one obtains the measure-preserving dynamical system
(Z,%27,uz,Te) with a normalized measure py. (Z, X7, uz, Tt) is called
the effective system (as opposed to the full system (X, Zx, uz, Tt)).

The Boltzmann entropy of a macro-state M relative to Z is
Sg(M):=kglog [uz(Zy)] (kg is the Boltzmann constant). The Boltz-
mann entropy of a system at time t, Sy(t), is the entropy of the
macro-state the system is in at t relative to Z: S,(£):=S,(Mxq)),
where x(t) is the system's micro-state at t and My, is the macro-
state supervening on x(t).

One of the macro-regions is singled out as corresponding to the
equilibrium state of the system relative to Z. A crucial aspect of the
standard presentation of BSM is that equilibrium corresponds to
the largest macro-region (measured in terms of ;). In fact, this is
often used as a criterion to define equilibrium: the equilibrium
state relative to Z is simply the one that is associated with the
largest macro-region. Since the logarithm is a monotonic function,
the equilibrium state is also the one with the largest Boltzmann
entropy.

2.2. Example 1: the dilute gas

Consider a system consisting of N particles in a finite container
isolated from the environment. The micro-state of the system is
specified by a point x = (g, p) in the 6N-dimensional set of possible
position and momentum coordinates 7. So I is the X of the gas.
The dynamics of the system is determined by its classical Hamil-
tonian H(x). Energy is preserved and therefore the motion is
confined to the 6N—1 dimensional energy hypersurface g
defined by H(x) = E, where E is the energy value. So I'¢ is the Z
of the gas. The solutions of the equations of motion are given by
the flow T; on I'r, where T{(x) is the state into which x e I'r evolves
after time t has elapsed. X is the standard Lebesgue-c-algebra. I" is
endowed with the Lebesgue measure /1, which is preserved under
T.. A measure ug on I'r can be defined which is preserved as well
and is normalised, i.e.ug(I'g)=1 (cf. Frigg, 2008, p. 104).
(T'e, Zg, pg, Tr) is the effective measure-preserving dynamical sys-
tem of the gas.

The macro-states usually considered arise as follows: the state
of one particle is determined by a point in its 6-dimensional state
space y, and the state of system of N identical particles is
determined by N points in this space. Since the system is confined
to a finite container and has constant energy E, only a finite part of
y is accessible. One then partitions the accessible part of y into
cells of equal size 6w whose dividing lines run parallel to the
position and momentum axes. The result is a finite partition

2 The dynamics is given by the evolution equations restricted to Z, and we
follow the dynamical systems literature in denoting it again by T,.
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Qqg= {w‘ljg, wfg}, I e N (where the subscript ‘dg’ stands for ‘dilute
gas’). The cell in which a particle's state lies is its coarse-grained
micro-state. The coarse-grained micro-state of the entire gas,
called an arrangement, is given by a specification of the coarse-
grained micro-state of each of particle.

A specification of the ‘occupation number’ of each cell is know
as a distribution Dgg = (N1,N3,...,N)), where N; is the number of
particles whose state is in cell »f8. Since macro-properties are
fixed by the distribution, the macro-states correspond to the
different distributions. Each distribution is compatible with several
arrangements, and the number G(D,g) of arrangements compatible
with a given distribution Dgg is G(Dgg) = N!/N1!N3!..., N

Every micro-state x of I'r is associated with exactly one
distribution Dgg(x). One then defines the macro-region I'p,, as the
set of all x that are associated with macro-state Dyg,: I'p, =
{x € I'e : Dyg(x) = Dyg}. The equilibrium macro-region is defined as
the macro-region of largest measure yug.

In his famous 1877 paper Boltzmann provided an argument to
determine the equilibrium distribution, nowadays referred to as
the combinatorial argument. He assumed that the energy e; of
particle i depends only on the cell in which it is located and that
thus E= >"!_, Nie;. Assuming that the number of cells in Qg is
small compared to the number of particles, Boltzmann showed
that ue(I'p,,) is maximal when

N; =ye™, (1)

where y and 4 are parameters which depend on N and E. This is the
discrete version of the Maxwell-Boltzmann distribution. Thus the
equilibrium macro-state corresponds to the Maxwell-Boltzmann
distribution.

What (1) gives us is the distribution of largest size (for the
Lebesgue measure) on the 6N-dimensional shell-like domain I'gs
specified by the condition that E = Zf»: ; Nie;. It does not give us
the macro-region of maximal size (i.e., the distribution with the
largest measure ur on the 6N—1 dimensional 7). It is then
typically assumed that the possible distributions and the propor-
tion of the different distributions would not change if macro-states
were instead defined on I'g, which yields the result that the
equilibrium region is the largest region on I'g. As Ehrenfest and
Ehrenfest (1959, p. 30) stress, this assumption is in need of further
justification. We grant, for the sake of argument, that such a
justification can be given and that the equilibrium macro-region
constructed in the above manner is the largest region of I'g.

2.3. Example 2: Baker's gas

Baker's gas consists of N identical particles that evolve (inde-
pendently of each other) according to Baker's transformation (cf.
Lavis, 2005). Its micro-states are of the form b = (by,cq, ..., by, CN),
where b; €[0,1] is the momentum and c¢; €[0, 1] is the position
coordinate of the ith particle. The possible micro-states are the set
B=1[0,11?, which is both the X and Z of Baker's gas. Time is
discrete and the evolution after one time step is given by applying
the Baker's transformation to each coordinate. That is, the state
b=(...b;,c;...) evolves into the state A(b) =(...0(b;,c;)...), where
i % if 0<b; s% and 2b; -1, # otherwise. 2)
Xp is the Lebesgue-s-algebra of B and, intuitively speaking, consists
of all subsets of [0,1]?V. B is endowed with the Lebesgue measure
ug, which is preserved under A. (B, Zp, A, up), Where A, is the P
iterate of A, is a measure-preserving deterministic system describ-
ing the behaviour of Baker's gas.

The macro-states usually considered arise by applying the same
recipe as in Example 1. One starts by partitioning the unit square
(the state space for one particle) into cells of equal size 6o whose

g(b,‘, Ci) = 2b

dividing lines run parallel to the position and momentum axes.
This results into a finite partition ng::{a)ll’g, ...,wf’g}, le N (where
‘bg’ stands for ‘Baker's gas’). The coarse-grained micro-state of a
particle is the cell in which a particle's state lies. An arrangement is
given by a specification of the coarse-grained micro-state of all the
particles.

As above, the macro-properties of a system depend only on
how many particles there are in each cell and not on which
particles these are. That is, they only depend on the distribution
Dy = (N1,Ny, ...,Np), where N; is the number of particles in cell w;
and the distributions Dyg are the macro-states. The number G(Dy,) of
arrangements that lead to the same distribution Dpg is
G(Dpg) = N!/N1!INa!...,N;!. A macro-region Bp, is defined as the
set of micro-states that lead to the distribution Djg.

In keeping with the basic posit of BSM, the equilibrium macro-
state is defined as the macro-state corresponding to the largest
macro-region (measured with ug). Hence the equilibrium state is
characterised by the uniform distribution where N; =N/I for all i.®

2.4. Example 3: the Kac-ring

The Kac-ring model consists of an even number N of sites
distributed equidistantly around a circle. On each site there is a
spin, which can be in states up (u) or down (d). Hence the one spin
state space is {u, d}. A micro-state k of the ring is a specific
combination of up and down spin for all sites, and the full state
space K consist of all combinations of up and down spins (i.e., of 2N
elements). K is both the X and the Z of the Kac-ring. There are s,
1<s<N-1, spin flippers distributed at some of the midpoints
between the spins. The dynamics « rotates the spins one spin-site
in the clockwise direction, and when the spins pass through a spin
flipper, they change their direction. The probability measure
usually considered is the uniform measure ux on K
(K, P(K), k', i), where «* is the t*" iterate of x and P(K) is the power
set of K, is a measure-preserving deterministic system describing
the behaviour of the spins (cf. Bricmont, 2001; Lavis, 2008).

The macro-states usually considered are the total number of up
spins and will be labelled as MX, where i denotes the total number
of up spins, 0 <i< N. As above, the macro-regions K; are defined as
the set of micro-states leading to the macro-state MX. There are
N!/i\(N —i)! micro-states which give rise to the same macro-state
MK, 1t can be shown that the equilibrium macro-state, i.e. the
macro-state whose macro-region is of largest size, is Mﬁ/z, the
state in which half of the spins are up and half down.

We can again describe the equilibrium state for the Kac-ring in
terms of a distribution. Since the one spin state space {u,d} is
discrete (in contrast to the dilute gas and Baker's gas where it is
continuous), we can regard the states u and d as corresponding to
the cells w; of the gas. Then the equilibrium distribution is the
even distribution (the same number of spins are in u and d). So,
as in the case of Baker's gas, the equilibrium distribution is not the
Maxwell-Boltzmann distribution but the even distribution.

3. Scrutinising the standard conception of equilibrium

As we have seen in the last section, the Boltzmannian approach
associates equilibrium with the largest macro-region. This is taken
to be constitutive of equilibrium: the equilibrium state by defini-
tion is the state that is associated with the largest macro-region.
We call this the standard conception of equilibrium. This conception
raises two fundamental questions:

3 To make sure that this equilibrium macro-state is unique, we assume that N is
a multiple of L.



22 C. Werndl, R. Frigg / Studies in History and Philosophy of Modern Physics 49 (2015) 19-31

Question 1: Justification. Why is the equilibrium state defined as
the state with the largest macro-region? There is no obvious
connection between equilibrium and having a large state space
measure and therefore this association needs to be justified.
Question 2: Approach to Equilibrium. Under what conditions
do systems approach equilibrium? One expects systems to
approach equilibrium, but not all systems do. This raises the
question what dynamical conditions a system has to satisfy for
the approach to equilibrium to take place.

In this section we discuss currently available answers to both
questions and reach the conclusion that none fits the bill. Question
1 is addressed in Sections 3.1, 3.2 and 3.3; Question 2 is discussed
in Section 3.4.

3.1. Disambiguation: dominance and prevalence

As we have seen above, the standard version of BSM associates
equilibrium with the largest macro-region. But the notion of the
‘largest macro-region’ is ambiguous. It allows for two different
readings, which are, however, rarely distinguished clearly. We call
these two readings dominance and prevalence.

The first reading is often assumed in the philosophical litera-
ture on BSM and takes ‘largest’ to mean that the equilibrium
macro-region fills almost the entire effective state space, which, in
that context, is typically taken to be the energy hypersurface. This
notion of equilibrium can be found, for instance, in Goldstein
when he insist that the energy hypersurface ‘consists almost
entirely of phase points in the equilibrium macro-state, with
ridiculously few exceptions’ (Goldstein, 2001, p. 43).* For the
discussion to follow, it is helpful to have a formal and more
general rendering of this idea. We say that Zy,, is p-dominant iff
#z(Zm,,) = p for a particular f e (4, 1]. So if we say that a given Zm,, 1s
p-dominant, this presupposes that a particular value for g is
specified (for instance that the Zy,, is 3/4-dominant). This implies
that if a Zy,, is #'-dominant, then it is in fact also s-dominant for
all pin (1/2, p").1f, for instance, Zy,, is 3/4-dominant, then it is also
2/3-dominant. Often we are interested in the largest g for which
Zw,, is p-dominant. If the largest 4 is close to one, then we retrieve
Goldstein's definition of equilibrium.

The second reading is often appealed to in calculations and
takes ‘largest’ to mean ‘larger than any other macro-region’ (cf.
Boltzmann, 1877; Bricmont, 2001). That is, equilibrium is defined
by the condition: uz(Zu,,) > uz(Zw) for any macro-region M with
M # Meq. Again, a formal version of this condition will be useful
later on. We say that Zy, is &-prevalent iff miny .,
z(Zm.)) —1z(Zm)] =6 for a real number §>0. As above, this
presupposes that a particular value for § is chosen, and if a Zy,,
is &'-prevalent, then it is also s-prevalent for all 5 in (0, &).

At this point we do not aim to adjudicate between these
different definitions. We would like to point out, however, that
they are not equivalent: p-dominance implies s-prevalence, but
the converse fails. More specifically: for all , if Zy,, is f-dominant,
then it is also s-prevalent for all § in (0,25—1]. In other words,
whenever an equilibrium macro-region is f/~-dominant, there exists
a range of values for 6 so that the macro-region is also s-prevalent
for these values. This is intuitively clear because a macro-region
that takes up more than half of Z is also larger than any other
macro-region. By contrast, a macro-region that is larger than any
other macro-region need not take up more than half of Z. So if
Zy,, is 5-prevalent, there need not be a g so that Zy,, is also

4 The same conception of equilibrium can also be found in Albert (2000),
Bricmont (2001), Goldstein & Lebowitz (2004), Lebowitz (1993a, 1993b) and
Penrose (1989).

p-dominant. In fact, if there is a large number of macro-regions,
the largest macro-region can be relatively small compared to Z.
This point is often overlooked. As we have seen, many accounts
of SM are committed to the view that the equilibrium macro-
region is p-dominant (for a value of g close to one). However,
calculations usually only establish s-prevalence. This problem is
then often ‘resolved’ by simply brushing the difference between
the two notions under the rug and assuming that a s-prevalent
state is also p-dominant. For instance, Penrose (1989, p. 403) and
Goldstein (2001, p. 43) support the claim that the equilibrium state
fills up almost the entire state space by calculating that the ratio
between the measure of the equilibrium macro-region and the
macro-region of a standard non-equilibrium state is of order 10".
But this amounts to inferring g-dominance from s-prevalence.

3.2. Defining equilibrium: conceptual quandaries

The notion that equilibrium is defined by the largest macro-
region (where ‘largest’ can mean either g-dominant or §-preva-
lent) is deeply entrenched in BSM, and it is shared by rivalling
versions of BSM. Those who favour an account of BSM based on
ergodic theory have to assume that Zy,, is large because otherwise
the system would not spend most of its time in equilibrium (see,
for instance, Frigg & Werndl, 2011a, 2012a, 2012b). Those who see
the approach to equilibrium as a result of some sort of probabil-
istic dynamics assume that Zy,, is large because they assign
probabilities to macro-states that are proportional to ug(I'y) and
equilibrium comes out as the most likely state only if the
equilibrium macro-region is large (e.g. Boltzmann, 1877). Propo-
nents of the typicality approach see g-dominance (for 3 close to 1)
as the key ingredient in explaining the approach to equilibrium
and sometimes even seem to argue that systems approach
equilibrium because the equilibrium region takes up nearly all of
state space (e.g. Goldstein, 2001; Goldstein & Lebowitz, 2004).

However, the connection between equilibrium and large
macro-regions is not conceptual: there is nothing in the concept
of equilibrium tying it to either p-dominance or s-prevalence.
Hence, irrespective of their merits, all these accounts have to
answer the same fundamental question: what justifies the asso-
ciation of equilibrium with the largest macro-region?

A prominent answer originates in Boltzmann's 1877 paper:
equilibrium corresponds to the macro-state that is compatible with
the largest number of micro-states. Boltzmann then shows for dilute
gases that equilibrium thus defined is s-prevalent and that it is
characterised by the Maxwell-Boltzmann distribution (see Example
1 above). This way of thinking about equilibrium also seems to be at
work in Baker's gas (Example 2) and the Kac-ring (Example 3), where
equilibrium is associated with the largest macro-region.

This justificatory strategy faces a serious problem: the absence
of a conceptual connection with the thermodynamic (TD) notion
of equilibrium. The following is a typical TD textbook definition of
equilibrium: ‘A thermodynamic system is in equilibrium when
none of its thermodynamic properties are changing with time [...]’
(Reiss, 1996, p. 3). An isolated system converges to this state when
left to its own and it never leaves it once it has been reached
(Callender, 2001; Uffink, 2001). The problem is that there is simply
no conceptual connection between this notion of equilibrium and
the idea that the equilibrium macro-state is the one that is
compatible with the largest number of micro-states. This is a
problem for anyone who sees BSM as a reductionist enterprise.”

5 And while the precise contours of the reduction of TD to SM remain
controversial, we are not aware of any contributors who maintain radical anti-
reductionism.
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One might reply that since Zy,, is the largest subset of Z,
systems approach equilibrium and spend most of their time in
Zp,,- This shows that the BSM definition of equilibrium is a good
approximation to the TD definition. This is not true in general
(Frigg, 2010a; Frigg & Werndl, 2012a). Whether a system spends
most of its time in a §-prevalent macro-region depends on the
dynamics. If, for instance, the dynamics is the identity function,
states not initially in the s-prevalent macro-region will never
evolve to the s-prevalent macro-region and spend most of their
time there. Hence there will be no approach to equilibrium. We
will come back to this point below in Section 6.

Another account defines equilibrium in terms of the Maxwell-
Boltzmann distribution: a system is in equilibrium when its
particles satisfy the Maxwell-Boltzmann distribution (Eq. (1))
(e.g., Penrose, 1989). This is not a viable definition. The Maxwell-
Boltzmann distribution is in fact the equilibrium distribution only
for a limited class of systems, namely for systems consisting of
particles in a finite container isolated from the environment with
negligible interparticle forces. Examples 2 and 3 show that there
are systems whose equilibrium distribution is not the Maxwell-
Boltzmann distribution. In general, systems with non-negligible
interactions will have equilibrium distributions that are different
from the Maxwell-Boltzmann distribution (Gupta, 2003). Defining
equilibrium in terms of the Maxwell-Boltzmann distribution has
therefore the false consequence that many systems of which we
know that they approach equilibrium will never approach
equilibrium.

A third strategy justifies prevalence by maximum entropy con-
siderations along the following lines:® we know from TD that, if left
to itself, a system approaches equilibrium, and equilibrium is the
maximum entropy state. Hence the Boltzmann entropy of a
macro-state Sg is maximal in equilibrium. Since Sg is a monotonic
function, the macro-state with the largest Boltzmann entropy is
also the largest macro-state, which is the desired conclusion.

There are serious problems with the understanding of TD in this
argument and with the implicit reductive claims. First, that a system,
when left to itself, reaches equilibrium where the entropy is maximal
is often regarded as a consequence of the Second Law of TD, but it is
not. As Brown and Uffink (2001) point out, that systems tend to
approach equilibrium has to be added as an independent postulate,
and they call this postulate the ‘Minus First Law’. But the conclusion
does not follow even if TD is amended with the Minus First Law. TD
does not attribute an entropy to systems out of equilibrium at all. Thus,
from a TD point of view characterising the approach to equilibrium as
a process of entropy increase is meaningless!

Even if all these issues could be resolved, there would remain
the question why the fact that the TD entropy reaches a maximum
in equilibrium would imply that this also holds for the Boltzmann
entropy. To justify this inference, the assumption would need to be
made that the TD entropy reduces to the Boltzmann entropy.
However, it is far from clear whether this is the case. A connection
between the TD entropy and the Boltzmann entropy has been
established only for ideal gases. Here the Sackur-Tatrode formula
can be derived from BSM, and this shows that both entropies have
the same functional dependence on thermodynamic state vari-
ables. Yet for systems with interactions no such results are known
(cf. Frigg & Werndl, 2011b). Also, there are well-known differences
between the TD and the Boltzmann entropy. For example, the TD
entropy is extensive but the Boltzmann entropy is not (Ainsworth,
2012), and an extensive concept cannot reduce to a non-extensive
concept (at least not without further qualifications).

S This strategy has been mentioned to us in conversation but is hard to track
down in print. Albert's (2000) considerations concerning entropy seem to gesture
in the direction of this third strategy.

One could try to get around these worries by saying that
‘equilibrium’ is a primitive term of BSM and it is simply a
definition that equilibrium is the macro-state with the largest
macro-region. This is, however, would pull the rug from under-
neath every attempt to establish a connection between BSM and
TD, which is too undesirable a conclusion to be entertained
seriously.

3.3. Defining equilibrium: formal complications

The standard conception also faces formidable formal problems.
Even if one was willing to set aside (or simply ignore) the conceptual
problems discussed in the last subsection and focus just on the
calculations, the standard conception would not come out looking
good. The main problem is that, at least in its current form, the
standard conception makes assumptions that are so strong that the
domain of application of the theory is in effect limited to dilute gases.
This is far too narrow a scope for a theory that ought to provide a
general explanation of equilibrium phenomena.

Justifications of the fact that equilibrium corresponds to the
largest macro-region typically rely on the combinatorial argument
(Example 1). But the combinatorial argument makes extremely
strong assumptions. It assumes that the energy of a particle
depends only on the cell in which it is located. This assumption
applies, strictly speaking, only to systems with non-interacting
particles, i.e. ideal gases (Frigg, 2008; Uffink, 2007).” Ideal gases
are, perhaps, a good approximation for dilute gases, i.e. gases of
low density, and so the argument may deliver the approximately
correct results for such systems. However, the argument remains
silent about systems with stronger inter-particle forces such as
liquids and solids. This is a serious limitation, and no suggestions
have been made so far as to how it could be overcome.

One might try to circumvent the formal problems with the
combinatorial argument by taking the Maxwell-Boltzmann distribu-
tion as one's definition of equilibrium and then trying to argue -
without appeal to combinatorial considerations - that the part of the
effective state space taken up by points with that distribution is large.
This will everything but solve the problem (and even if it did, one
would still be left with the conceptual issues mentioned above!).
Maxwell's original 1860 derivation is in fact also dependent on the
assumption of non-interaction. The assumption enters via the postu-
late that the probability distributions in different spatial directions can
be factorised, which is true only if there is no interaction between
particles (see Uffink, 2007). Furthermore, the Maxwell-Boltzmann
distribution by itself implies nothing about the size of the correspond-
ing macro-region. Arguments for the claim that the Maxwell-Boltz-
mann distribution corresponds to the largest macro-region appeal to
the combinatorial argument. So we have come full circle. The conclu-
sion is that disregarding conceptual problems provides no rescue: the
calculations, at least in their current form, simply do not provide what
is needed.

3.4. The approach to equilibrium

Let us now briefly turn to the second question. Since this
question has been extensively discussed, we only offer a short
summary of the main points and refer the reader to the relevant
literature.

The currently most influential account in physics is the typi-
cality account. It originates in the work of Lebowitz (1993a, 1993b)
and has been developed, among others, by Zanghi (2005),

7 Strangely, the combinatorial argument does not deliver the correct conclu-
sion even for ideal gases because the Maxwell-Boltzmann distribution does not
correspond to the equilibrium distribution for ideal gases. The reason why this
argument fails for ideal gases will be discussed in Section 6.1.
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Goldstein (2001) and Goldstein and Lebowitz (2004). The leading
idea behind this account is that systems approach equilibrium
because equilibrium micro-states are typical. It is our considered
view this account is unsuccessful because it fails to take the
system's dynamics into account (cf. Frigg, 2009, 2010a; Frigg &
Werndl, 2012a, 2012b).8

The canonical answer to Question 2 is given within the ergodic
programme. The leading idea is that systems approach equilibrium
iff they are ergodic. To introduce the formal definition of ergodi-
city, we first need the notion of the long-run fraction of time a
system spends in a region Ae X,

t
LFA(X) = tlim%/ 14(T.(x))dr for continuous time, i.e. t e R,
— 00 0
1 t—1
LFA(x) = [lim? > 1a(T.(x)) for discrete time, i.e. t € Z, 3)
i =0

where 14(x) is the characteristic function of A, i.e. 14(x)=1 for
xeA and O otherwise. A measure-preserving dynamical system
(Z,%7,uz,Ty) with a normalised measure p, is ergodic iff for any
Ae ZZ

LFA(X) = pz(A), 4

for all x e Z except for a set W with p,(W)=0.

The ergodic approach has been criticised for a number of
reasons, most notably for its inapplicability to realistic systems
(for a summary of the criticisms see Frigg, 2008, pp. 121-126).
In Frigg and Werndl (2011a) we offer a generalisation of this
account based on the notion of epsilon-ergodicity and argue that
dilute gases satisfy this condition. A system (Z, Xz, u, T;) is epsilon-
ergodic iff°

it is ergodic on a set Z = Z of measure
1—e& where ¢ is a very small real number. (5)

Our arguments go some way to countering the inapplicability
charge, but it remains silent about systems with stronger interac-
tions such as fluids and liquids.

Finally, there is a family of proposals that grounds the approach
to equilibrium in different kinds of probabilistic dynamics.
Boltzmann (1877) introduces the probability of a macro-state
and postulates that this probability is proportional to its size.
Since equilibrium is the largest state, it is also the most likely state.
Systems then evolve from less to more likely states, which
explains the approach to equilibrium. Albert (2000) introduces
conditional probabilities by conditionalising on the past state and
exploiting the internal structure of macro-regions. The result of
this account is that systems are overwhelmingly likely to approach
up in equilibrium. These approaches are discussed in Frigg (2010b)
and found wanting both for technical and conceptual reasons.

The conclusion we draw from the above is that there is no
satisfactory general answer to Question 2.

4. Redefining equilibrium

The failure of standard justificatory strategies prompts the
search for an alternative solution. This solution, we submit, cannot
be found by revising any of the approaches reviewed in the last

8 We criticize the idea that the approach to equilibrium takes place because
micro-states are typical. Interpreting measures in BSM as typicality measures might
still be fruitful (e.g., Werndl, 2013).

9 In detail: (Z.X7,u;.T;) is e-ergodic, e R, 0 <& <1, iff there is a set Zcz,
uz(Z)=1—¢, with T,(Z) < Z for all t, such that the system (Z-ZZJ‘Z"TQ is ergodic,
where ¥, and y; is the s-algebra X7 and the measure y; restricted to Z. A system
(Z,Xz,uz,Ty) is epsilon-ergodic iff there exists a very small ¢ for which the system is
e-ergodic.

section. We have to wipe the slate clean and start over. The leading
idea of our approach is to reverse the direction of definition, as it
were. While many previous approaches sought to define equili-
brium in terms of micro-mechanical properties, we depart from a
TD definition of equilibrium and then exploit the supervenience of
macro-states on micro-states to ‘translate’ this macro definition
into micro language. The resulting definition of equilibrium is not
only free from the conceptual and technical difficulties we have
encountered in the last section; it also paves the ground for a
general theorem (to which we turn in the next section) establish-
ing that the equilibrium macro-region is the largest macro-region
in a requisite sense.

As we have seen above, a system is in TD equilibrium if all
change has ground to a halt and none of its thermodynamic
properties vary with time. This state also has the character of an
attractor: it is the state to which an isolated system converges
when left alone and which it never leaves once it has got there.
Furthermore, TD equilibrium is unique in the sense that the
system always converges toward the same equilibrium state.
Bringing these points together one can give the following defini-
tion, which also incorporates the Minus First Law of TD:

Definition 1 (TD Equilibrium). Consider an isolated system S and a

state after t time steps for a system that started initially in

10
My, v,.

Exploiting the fact that macro-states supervene on micro-states
this translates in the following definition of BSM equilibrium (the
qualification ‘strict’ will become clear soon):

Definition 2 (Strict BSM Equilibrium). Consider the same system S
as in Definition 1, described as measure-preserving deterministic
system (Z,Xz,uz, Tt) equipped with the macro-variables {vi,...,v},
and let M(x) be the macro-state that supervenes on micro-state x. If
there is a macro-state M- _ - satisfying the following condition, then
it is the strict BSM equilibrium of S: For all initial states x € Z there
exists a time t* such that My, v, (T¢(x)) = My v forall t >t

Definition 2 is too rigid and there are two reasons for this. First,
in SM, unlike in TD, we should not expect every initial condition to
approach equilibrium (e.g. Callender, 2001). Indeed, it is reason-
able to allow that there is a set of initial conditions of very small
measure ¢ which do not approach equilibrium.

Second, the systems under consideration exhibit Poincaré
recurrence: as long as the ‘M’ in SM refers to a mechanical theory
that conserves state space volume (and there is widespread
consensus about this),!! any attempt to justify an approach to
strict equilibrium in mechanical terms cannot succeed. The system
will at some point return arbitrarily close to its initial condition, in
violation of strict equilibrium (Frigg, 2008; Uffink, 2007). Further-
more, strict equilibrium is not only unattainable but also undesir-
able. Experimental results show that equilibrium is not the
immutable state that classical TD presents us with because

19 The time * may depend on the initial state. This dependence can be avoided
by changing the requirement to: there exists a time t* such that for all initial states
My,...v;: My, v,()=Mys _y for all t>t* Nothing in what follows depends
on this.

" Hamiltonian mechanics falls within this class, but the class is much broader.
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systems exhibit fluctuations away from equilibrium (MacDonald,
1962; Wang et al, 2002). Thus strict equilibrium is actually
unphysical and adopting it would diminish the empirical adequacy
of the theory.

To get around these difficulties, the condition that a system has
to remain in equilibrium for all t > t* has to be relaxed. It is natural
to postulate that the equilibrium state is the state in which the
system spends most of the time in the long run. This can be done
in two ways. The first is to demand that equilibrium is the state in
which the system spends at least a of its time for ae(, 1].
Recalling the notion of the long-run fraction of time a system
spends in a region A (Eq. (3)), we can state the first definition of
equilibrium:

Definition 3 (BSM a-e-Equilibrium). Consider the same system as
in Definition 2. Let « be a real number in the interval (%, 1], and let
e be a very small positive real number. If there is a macro-state
My v satisfying the following condition, then it is the a-e-
equilibrium state of S: There exists a set Y<=Z such that
uz(Y)>1—¢, and all initial states x e Y satisfy

LFz,, p ®) > a (6)

: 12
We then write M-c-eq:==Myz__y:.

In this definition « gives a lower bound for the fraction of time
that the system spends in equilibrium.'® Intuitively one would like
a to be close to one. However, nothing in the formal apparatus
depends on this and so we do not build any such requirement into
the theory. A determination of the correct value of « may depend
on contextual factors and it is advantageous to keep options open.

The second way of relaxing the strict definition is to compare
the time spent in different macro-states (Boltzmann, 1877;
Bricmont, 2001). From such a comparative point of view it is
natural to say that if there is a macro-state in which the system
spends more time than in any other state, then that is the
equilibrium state. This idea can be rendered precise as follows:

Definition 4 (BSM y-e-Equilibrium). Consider the same system as
in Definition 2. Let y be a real number in (0, 1] and let ¢ be a small
the following condition, then it is the y—g—equilibri{ifn state of S:
There exists a set Y =Z such that p,(Y)>1—¢ and for all initial
conditions xe Y

LFz,, . X)= LFz,(0+y Q)
1770

The parameter y gives a lower bound for the fraction of time
that the system spends longer in M, ....q than in any other state. To
facilitate language, we then say that the system spends y-more-
time in M,_,.eq. If, for instance, y=0.2, then the fraction of time the
system spends in M,...eq is at least 0.2 larger than the fraction of
time it spends in any other macro-state.

12 We assume that there are at least two macro-states of measure > ¢ to avoid
that this definition can be trivially fulfilled (i.e., because there is only one macro-
state or because macro-regions smaller than the largest macro-region - regions
that correspond to states initially in non-equilibrium - have a total measure
smaller than ¢ and hence it is irrelevant what happens to them).

13 Definition 3 is bears some similarity to Lavis' (2005, p. 255) notion of TD-
likeness. However, unlike TD-likeness, Definition 3 makes no assumptions about
the nature of fluctuations.

As above, there is a question about the correct value of the
parameter, and intuitively one would like y to be as close to one as
possible. However, again, nothing in the formal apparatus depends
on y assuming specific values and so there is no need to enter into
any commitments.'*

The general proofs (in the next section) that the equilibrium
state is the largest state will be based on these definitions. But
before harvesting the fruits of our efforts, we would like to add a
number of qualifications. First, it should be stressed that an
important assumption in this characterisation of equilibrium is
that u, (and not some other measure) is the relevant measure.

Second, notice that an a-e-equilibrium is strictly stronger than a
y-e-equilibrium. Whenever a system has an a-e-equilibrium, then
it also has a y-e-equilibrium and 2«— 1 provides a lower bound for
7. The converse need not hold: a system can have a y-e-equilibrium
without having an a-e-equilibrium. Indeed this is the situation we
encounter in Baker's gas with the macro-states Dy, (Example 2)
and the Kac-ring with the macro-states MX (Example 3). In both
cases the largest macro-region corresponds to an y-e-equilibrium,
but this region does not correspond to an a-e-equilibrium (Lavis,
2005, 2008). The reason for this is that there are a vast number of
non-equilibrium states. Thus while each non-equilibrium state is
individually much smaller than the equilibrium state (as per
prevalence), taken together all these non-equilibrium states can
be of a considerable size. In fact, taken together, the non-
equilibrium macro-states may take up a larger chunk than the
equilibrium macro-state.

Third, we remain agnostic about issues of precedence. Both
notions of equilibrium are legitimate and any preference for one
over the other will depend on the context and purpose of the
investigation. There is no non-arbitrary way to single out one as
‘true equilibrium’.

Fourth, that there is an approach to equilibrium is built into
both definitions of equilibrium. If a state is not such that the
system spends most of the time in it (in one of the two senses),
then it simply is not an equilibrium state. Having an equilibrium
state and there being an approach to equilibrium are really the
two sides of the same coin. This avoids the ineptness of other
approaches which have to make sense of systems where an
equilibrium state exists but no approach to equilibrium takes
place. The crucial question in our approach is: under what
circumstances does a system have an equilibrium state at all. We
turn to this question in Section 6.

Fifth, it is part of the folklore of SM that the approach to
equilibrium happens fairly quickly, and some may bemoan that
this fact has not been built into the definition of equilibrium. There
are good reasons to resist such a move. First, TD is completely
silent about the speed at which processes take place (indeed, there
is no parameter for time in the theory). Second, approaches to
equilibrium happen at various speeds and not all are fast (e.g.,
large steel parts take months to cool down). For these reasons the
approach to equilibrium being fast should not be part of a
definition of equilibrium.

Sixth, some reductionists may feel that a definition of equili-
brium in SM that is based on ‘top down translation’ of its name-
sake in TD undermines the prospect of reducing TD to SM. They
would argue that equilibrium has to be defined in purely mechan-
ical terms, and must then be shown to agree with the TD definition
of equilibrium. This point of view is not the only one and reduction
can be had even if equilibrium is defined ‘top down’. For one,
whether the above definition undercuts a reduction depends on
the concept of reduction one entertains. For someone with a

4 Both Definitions 3 and 4 are time reversal invariant: the same equilibrium
state would emerge under the time-reversed dynamics.
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broadly Nagelian perspective on reduction there is no problem:
the above definition provides a bridge law, which allows the
derivation of the requisite macro regularities from the laws of
the micro theory. Similar arguments can be made in the frame-
work of New Wave Reductionism (cf. Dizadji-Bahmani, Frigg, &
Hartmann, 2010). Second, equilibrium is a macro concept: when
describing a system as being in equilibrium, one looks at it in
terms of macro-properties. From a micro point of view all there is
are molecules bouncing around. They always bounce - there is no
such thing as a relaxation of particle motion to an immutable state.
Hence the very notion of equilibrium is of questionable signifi-
cance at the micro level, and a definition of equilibrium in macro
terms is no heresy.

5. General proofs for f-dominance and §-prevalence

The crucial question now is: are the a-e-equilibrium and y-e-
equilibrium macro-regions large in a requisite sense? In this
section we prove in full generality that this is so. And we
emphasise that ‘proof’ and ‘full generality’ ought to be taken
literally. Our argument is based on two theorems for which we
provide rigorous proofs. The argument is fully general in
that no assumptions about the system's dynamics or the nature
of the interaction between particles is made. The theorems
apply to any isolated system no matter what its internal
constitution.

Before stating the theorems we have to say what ‘large in a
requisite sense’ means, and unsurprisingly this will not be the
same for the two notions of equilibrium. As we have seen in the
last section, a system has an a-e-equilibrium if, in the long run,
the trajectories starting in most initial conditions spend at
least fraction « of their time in the equilibrium macro-region.
A natural notion of largeness for this kind of equilibrium is that the
equilibrium macro-region occupies approximately fraction
a of the state space. This is tantamount to saying that this region
is p-dominant, where g is roughly equal to a. The case of
the y-e-equilibrium is analogous. The same line of reasoning leads
to the conclusion that the equilibrium macro-region being
large means that it is s-prevalent for a value of § that is roughly
equal to y.

It is worth pointing out that the definitions in the last section
by no means prejudge that matter: neither Definition 3 nor
Definition 4 makes a statement about the relative size of the
macro-regions Zy,, or Zy, ., nor do they in an obvious sense
imply anything about it. Indeed, these regions being extremely
small would be entirely compatible with the definitions. That
these macroregions have the right size is established in the two
theorems that we are stating now, and which we prove in the
Appendix.

e-eq?

Dominance Theorem: If My-,-eq i an a-e-equilibrium of system S,
then yz(Zu,..,) > p for p=a(1—¢)."

Prevalence Theorem: If M,-.eq is a y-e-equilibrium of system S,
then uz(Zm,..,) =pz(Zm)+y—e for all macro-states M #
My»g—eq-ls

It is important to highlight that both theorems prove the
conditional claim that if there is an a-e-equilibrium/y-e-equili-
brium, then the corresponding equilibrium macro-region is domi-
nant/prevalent. As with all conditionals, the crucial question is
whether, and under what conditions, the antecedent holds. We
turn to this issue now.

1> We assume that e is small enough so that a(1—e¢) > L.
16 We assume that ¢ <7.

6. The existence of an equilibrium state

In this section we address the vexed question under what
conditions does an equilibrium state exist? On our view this
question subsumes the question under what conditions the
approach to equilibrium takes place. That a system approaches
equilibrium is built into the notion of an equilibrium state. If a
state is not such that the system spends most of the time in that
state (in one of the two senses specified), then that state simply
isn't an equilibrium state. In other words, if the system does not
approach equilibrium, then there is no equilibrium. Having an
equilibrium state and there being an approach to equilibrium are
two sides of the same coin. So when we propose to inquire into the
conditions under which an equilibrium state exists, we are not
turning to a finicky question in mathematical physics. In fact, what
is at stake is one of the core problems of SM, namely the approach
to equilibrium.

The main message of this section is that for an equilibrium to
exist three factors need to cooperate: the choice of macro-variables,
the dynamics of the system, and the choice of the effective state space
Z. The cooperation between these factors can take different forms
and there is more than one constellation that can lead to the
existence of an equilibrium state. The important point is that the
answer to the question of existence is holistic: it not only depends
on three factors rather than one, but also on the interplay between
these factors. For these reasons we call these three factors the
holist trinity.

A number of previous proposals fail to appreciate this point. The
problem of the approach to equilibrium has often been framed as
the challenge to identify one crucial property and show that the
relevant systems possess this property. Ergodicity is a case in point.
This is to start on the wrong foot. As we will see, ergodicity is
neither necessary nor sufficient for the existence of an equilibrium
state (which, again, incorporates the approach to equilibrium).

In the next subsection this trinity is introduced in an informal
way and illustrated with examples. These examples show what
requisite collaborations look like, and what can go wrong. In
Section 6.2 we state a rigorous mathematical theorem (which
we prove in the Appendix) providing necessary and sufficient
conditions for the existence of an equilibrium state. In Section 6.3
we revisit the ergodic account from the point of view proposed in
this paper.

6.1. The holist trinity

Macro-variables: The first condition is that the macrovariables
must be the right ones. To illustrate this, consider the Baker's gas
(Example 2) with an odd number of particles and suppose that
there is only one macro-variable v,. This variable indicates
whether more particles of the gas are on the right hand side of
the container: it takes the value 1 if more particles are on the right
hand side and the value O if this is not the case. This macro-
variable leads to two macro-states with corresponding macro-
regions Bg and Bpo With ug(Bgr) = 1/2 = pp(Bnowr)- (Note that Bk
also contains those states in which an odd number of particles are
exactly in the middle of the box and thus an equal number of
particles is on the right hand side and on the left hand side of the
box. Since these states make up a set of measure zero we have
ug(Br) =1/2 = ug(Bnor)). Condition (4) of ergodicity is usually
regarded as the dynamical condition most conducive to an
approach to equilibrium, and the Baker's gas is ergodic (Werndl,
2009). Nevertheless there is no equilibrium in this case because, in
the long run, the system spends half of its time in both macro-
regions. By contrast, for the macro-states Dy, there is a y-e-
equilibrium for the very same dynamics. This illustrates that the
existence of an equilibrium depends as much on the choice of
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macro-variables as it depends on the system's dynamical proper-
ties and that there is no dynamical condition that is ‘the right one’
in absolute terms.

This also implies that if no macro-variables are considered at
all, there can be no equilibrium. Obvious as this may seem, some
confusion has resulted from ignoring this simple truism. Sklar
(1973, p. 209) mounts an argument against the ergodic approach
by pointing out that a system of two hard spheres in a box has
the right dynamics (namely ergodicity) and yet fails to show an
approach to equilibrium. It hardly comes as a surprise, though,
that there is no approach to equilibrium if the system has no
macro-variables associated with it in terms of which equilibrium
could even be defined! A dynamical condition by itself just is not
sufficient to guarantee an approach to equilibrium.

There is a difference in the macro-state structure of our three
examples. The macro-states of dilute gases (Example 1) and of the
Baker's gas (Example 2) are local in the sense that position
matters: for micro-states which correspond to the same macro-
state no differences in the (coarse-grained) position are allowed.
Contrary to this, the macro-states of the Kac-ring (Example 3) are
non-local in the sense that the (coarse-grained) position does not
matter: there are micro-states where a site or a set of neighbour-
ing sites has a different property but which correspond to the
same macro-state.'”

Furthermore, this difference is not necessitated by the systems
under consideration. One could consider macro-states for the Kac-
ring which are local. E.g., one could partition the pointers into cells
of two neighbouring sites where there are three configurations
(two black, two white, one black and one white) and then define
macro-states according to the different configurations of all the
cells. Indeed, sometimes one will want to take clustering into
account, and then macro-states different from MK will need to be
considered. Conversely, one could consider macro-states for dilute
gases which are non-local, e.g., by requiring, on top of the classical
macro-state structure, that one obtains the same macro-state if the
particles in a box are rotated in space along one of the three axes
or along a diagonal.'®

These observations highlight that some care is needed in
choosing one's macro-variables. Different choices are possible,
and these choices lead to different conclusions about the equili-
brium behaviour of the system. We do not think that there is right
and wrong in this choice. What macro-variables one picks in a
given situation will depend on the macroscopic properties of
interest, which can, or course, vary depending on the context of
the investigation and on the situation at hand.

Dynamics: The existence of an equilibrium depends as much on
the dynamics of the system as it depends on the choice of macro-
variables. Whatever the macro-variables, if the dynamics is not the
right one, then there will be no approach to equilibrium. Hence,

17 There is also a similarity in the macro-state structure of the above examples.
In all these examples macro-states are determined by combinatorial considerations
of the single macro-space variable. That is, one considers a partition
{a1,....a5).f = 2, of the state space of a single variable (particle or site), and then
the macro-states are determined by counting the number of single variables taking
avalue in ay, in ay, ..., in ar. Yet it is important to see that this is just one possible
way of defining macro-states. Other macro-states, such as the local macro-states for
the lattice gas or the non-local macro-states for the gas mentioned in the next
paragraph, are not determined in this way.

8 Here it should be added that sometimes one will find that the macro-
variables previously considered are too fine. As a consequence, one turns to new
macro-variables which are defined by the previously considered macro-variables
taking values in a certain range or interval. To provide an example, for the Kac-ring,
particularly when the number of sites is very large, one may not want to consider
the total number of up spins but different ranges of the total number of up spins
(e.g. as in Lavis, 2005). Similarly, for dilute gases when the number of particles is
large one might not want to consider the total numbers of particles in cell »$¢, »32,
etc., but different ranges of the total number of particles in cell w{2, »%¢, etc.

the converse of the Dominance and Prevalence Theorems is
not true. That is, the following conditional is false: if there is a
p-dominant/s-prevalent macro-region, then this macro-region
corresponds to a a-e-equilibrium/y-e-equilibrium.

Let us give a few simple examples to drive this point home:
suppose that the dynamics is the identity function. Then there can
be no approach to equilibrium because states in a small macro-
region will always stay in this region. Similarly, a Kac-ring without
spin flippers has no equilibrium, and a system of uncoupled
harmonic oscillators with the ideal gas macro-state structure has
no equilibrium. To provide a more general example, suppose that
the dynamics is such that states initially in the largest macro-
region always remain in the largest macro-region and states initially in
smaller macro-regions only evolve into states in these smaller macro-
regions. Then there can be no approach to equilibrium because non-
equilibrium states will not evolve into equilibrium.

Identifying the correct Z: A number of considerations in con-
nection with equilibrium depend on the choice of Z, which is the
set relative to which macro-regions are defined. Intuitively speak-
ing, Z is a subset whose states evolve toward the same equilibrium
macro-state. Hence, crucially, the very existence of an equilibrium
state depends on the correct choice of Z. There can be situations
where a system has an equilibrium with respect to one choice of Z
but not with respect another choice of Z. Most importantly, if there
is an equilibrium relative to some set Z, this does not imply that
there exists an equilibrium on a superset of this set.

Let us put this observation into perspective. The ‘choice of Z
problem’ can be subsumed under the question whether the
combination of macro-variables and dynamics is the right one in
the following sense: even if there is an equilibrium (in one of the
two senses) relative to a (correctly chosen) set Z, whenever Z is
chosen wrongly, then for the given macro-state structure and
dynamics there will be no equilibrium. In particular, relative to a
given macro-state structure and dynamics, there are choices of Z
so that there is an equilibrium relative to Z even though there does
not exist an equilibrium for a superset of Z.

For this reason determining the equilibrium state as the macro-
region of largest measure will only work if the correct set is
chosen. Most importantly, if there is an equilibrium relative to a
set Z, but one instead chooses a superset for the maximation
procedure, one cannot expect to arrive at the correct result. In this
case there might be a macro-region of largest measure, but it does
not correspond to equilibrium because there is no equilibrium
relative to the superset.

Let us illustrate this with two examples. First, consider a dilute
gas with the distributions Dy, as macro-states (Example 1).
Suppose that one decides to identify the equilibrium macro-state
of I by determining the largest macro-region of I. Clearly, the
result one obtains is that the largest macro-region corresponds to
the uniform distribution. However, we know that equilibrium is
given by the Maxwell-Boltzmann distribution (1) and not the
uniform distribution! What has gone wrong? The answer is that
relative to I' no equilibrium exists because there are different
equilibria for different total energies of the system (as reflected
by the Maxwell-Boltzmann distribution, which depends on the
total energy E). That is, an equilibrium only exists relative to the
set I'r but not relative to I". Note that the reason that one does not
obtain the correct equilibrium distribution by determining the
largest macro-region of I" is not that I" is decomposable under the
dynamics (e.g., the set K of the KAC-ring is decomposable, but it
still has a unique equilibrium cf. the end of Section 6.3). Rather, the
reason is that the equilibrium macro-state is dependent on the
energy value and thus the set Z relative to which equilibrium is
defined cannot be I.

As a second example consider an ideal gas consisting of N
particles with mass m moving on a three-dimensional torus.
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Suppose that one decides to determine the equilibrium macro-
state of I'g by following the standard procedure of the combina-
torial argument. Hence one calculates the largest macro-region of
I and arrives at the Maxwell-Boltzmann distribution (1). How-
ever, for an ideal gas the momentum p; of each particle is a
constant of motion and e; = p?/(2m). Therefore, if the ideal gas
with a certain energy level E= Zf’zle,- starts in a micro-state
where the momenta of the particles are not distributed according
to the Maxwell-Boltzmann distribution, they will never be
distributed according to the Maxwell-Boltzmann distribution.
Hence for an ideal gas the Maxwell-Boltzmann distribution
does not correspond to equilibrium. The combinatorial argument
does not deliver the correct conclusion for ideal gases because
the largest macro-region is determined relative to the set I'g
where no equilibrium exists! There is a y-e-equilibrium (namely,
where the particles are uniformly distributed in space with
constant p), but it is relative to the hypersurface of constant
momentum Z,.

Summing up, we have shown that the existence of an equili-
brium depends on the harmonious interplay of three factors: the
choice of macro-states, the dynamics of the system and the choice
of the effective state space Z. The challenge now is to say in precise
terms what ‘harmonious’ amounts to. The Existence Theorem in
the next subsection conclusively answers this question.

6.2. The Existence Theorem

In this subsection we introduce a theorem providing necessary
and sufficient conditions for the existence of an equilibrium state.
Like the theorems we have seen earlier, it is fully general in that it
makes no assumptions about the system's dynamics other than
that it be measure-preserving.

Before stating the theorem (the proof is given in the Appendix),
we have to introduce the Ergodic Decomposition Theorem, which is
a crucial theorem in ergodic theory (cf. Petersen, 1983, p. 81). An
ergodic decomposition of a system is a partition of the state space
into cells so that the cells are invariant under the dynamics (i.e. are
mapped onto themselves) and that, for any arbitrary cell, the
dynamics, when restricted to a cell, is ergodic (it is allowed that
the regions are of measure zero and that there are uncountably
many of them). More colloquially: there is an ergodic decomposi-
tion if one can slice up the state space in different parts in each of
which the dynamics is ergodic. The Ergodic Decomposition The-
orem makes the surprising statement that such a decomposition
exists for every measure-preserving dynamical system with a
normalized measure, and that the decomposition is unique. In
other words, the dynamics of a system can be as complex as we
like and the interactions between the constituents of the system
can be as strong and intricate as we like, and yet there exists a
unique ergodic decomposition of the state space of the system. As
an example consider the Kac-ring: the system is not ergodic on the
entire state space, but it does have an ergodic decomposition
(Lavis, 2005). Another simple example is the harmonic oscillator,
whose state space can be decomposed into ellipses on which the
motion is ergodic.

For what follows it is helpful to have a more formal rendering of an
ergodic decomposition (the precise formulation of the Ergodic Decom-
position Theorem can be found in the Appendix). Consider the system
(Z,27,uz,Ty). Let  be an index set, which can but need not be
countable. Let Z,, w € 2, be the cells into which the system's state
space can be decomposed. 2 comes equipped with a probability
measure z, which tells one how large a set of Z, is that are
characterised by certain values of . Furthermore, let T, be the
restriction of the dynamics of the system to Z,, and let =, and ,,
respectively, be the sigma algebra and measure defined on Z,,. These
can be gathered together in ‘components’ C, = (Z,,ZX,,Hu,.Tt).

The Ergodic Decomposition Theorem says that for every system
(Z,%27,uz,T;) there exists a unique set of ergodic C,, so that the system
itself amounts to the collection of all the C,.

We are now in a position to state the core result:

Existence Theorem: Consider a measure-preserving system
(Z,%7,uz,Ty) with macro-regions ZMV]. " and let C,=
Zos Zas by, Tt), w e 2, be its ergodic decomposition. Then the
following two biconditionals are true:

a-e-equilibrium: There exists an a-e-equilibrium iff there is a
macro-state M such that for every C,

Hp(Zow N Z]\}l) =a, (€]

except for components C, with w e @', uy(U,.oZ,) <e. M is
then the a-e-equilibrium state.

r-e-equilibrium: There exists a y-e-equilibrium iff there is a
macro-state M such that for every C, and any M # M

ﬂm(zm n ZM) = ﬂm(zw n ZM)-HG (9)

except for components C, with we Q', u;(U,c0Z,) <e. M is
then the y-e-equilibrium state.

Intuitively, the theorems say that there is an a-e-equilibrium/y-
e-equilibrium iff if the system's state space is split up into invariant
regions on which the motion is ergodic and the equilibrium
macro-state takes up at least a of each region/the equilibrium
region is larger than any other macro-region, except for regions of
total measure e. If we have found a space that matches these
conditions, then it plays the role of the effective state space Z.

It is important to note that there may be many different macro-
state/dynamics/Z triplets that make the Existence Theorem true.
The theorem gives the foundation for a research programme
aiming to find and classify all these triplets. We will classify these
triplets for the three examples we have introduced soon (at the
end of Section 6.3). Before we do so, it will be helpful to comment
on the ergodic approach because it can be interpreted as a special
case of the existence theorem.

6.3. Revisiting the ergodic account

The canonical explanation of equilibrium behaviour is given
with the ergodic approach. We now revisit this approach and
show that it can be interpreted as an instance of the Existence
Theorem, i.e. as providing a triplet that satisfies the above conditions.

It is often claimed that the approach to equilibrium can be
explained with the dynamical condition of ergodicity (Eq. (4)) or
epsilon-ergodicity (Eq. (5)). The results of this paper clarify these
claims. First, as pointed out in the previous subsection, if the
macro-variables are not the right ones, then even ergodicity or
epsilon-ergodicity will not imply that the approach to equilibrium
takes place. However, second, proponents of ergodicity and
epsilon-ergodicity as an explanation of the approach to equili-
brium often assume that there is a g-prevalent macro-region/an a-
dominant macro-region (e.g. Frigg & Werndl, 2011a, 2012b). Then
this indeed leads to particularly simple cases of the Existence
Theorem, implying that the macro-region corresponds to an a-e-
equilibrium/a y-e-equilibrium. More specifically, the following two
corollaries hold (proofs are given in the Appendix):

Ergodicity-Corollary: Suppose that the measure-preserving sys-
tem (Z,%z,uz, T¢) is ergodic. Then the following are true: (a) If
the system has a macro-region Z, that is f-dominant, M is an
a-e-equilibrium for a=p. (b) If the system has a macro-region
Z,; that is 5-prevalent, M is a y-e-equilibrium for y=3é.
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Epsilon-Ergodicity-Corollary: Suppose that the measure-
preserving system (Z,Xz,uz,T;) is epsilon-ergodic. Then the
following are true: (a) If the system has a macro-region Z;; that
is p-dominant for —e > 1, Z, is a a-e-equilibrium for a = g—e.
(b) If the system has a macro-region Zy, that is 5-prevalent for
5—e>0, Zy, is a y-e-equilibrium for y =5—e.

Yet it is important to keep in mind that ergodicity and epsilon-
ergodicity are just examples of dynamical conditions for which
an equilibrium exists. As shown by the Existence Theorem, the
dynamics need not be ergodic or epsilon-ergodic for there to be an
equilibrium.

Let us now come back to the classification of the triplets for the
examples introduced in Section 2, which will at the same time
illustrate the role of the ergodic approach. First of all, consider
Example 1 of the dilute gas (with the macro-state structure of the
combinatorial argument), which, from experience, is regarded to
have a a-e-equilibrium (and thus also a y-e-equilibrium). From a
mathematical perspective the dynamics relative to I'r is not well
understood. Frigg and Werndl (2011a) and Frigg and Werndl
(2012b) have argued that gases are epsilon-ergodic, and then this
would be an instance of the Epsilon-Ergodicity-Corollary. This is
plausible, but it is not the only possibility. The Existence Theorem
tells us what we know for sure. Namely, in order for the system to
have a a-e-equilibrium/a y-e-equilibrium, whatever the dynamics,
it has to be such that on each ergodic region the measure of the
equilibrium macro-region is at least «fthe equilibrium macro-
region is larger (by at least y) than any other macro-region (except
for regions of measure ¢). Note that for the example of the dilute
gas it is crucial that the right set Z is chosen. The existence
theorem is only satisfied relative to Z = I'z but not relative to Z=r".
If it were satisfied for Z=r, we would find that the solutions spend
most of their time in the uniform distribution where N; = N/I (the
macro-state with the largest measure relative to I'), which is
clearly not what we find. This is as it should be because there is
no unique equilibrium for all states in I, but there are several
different equilibria for different energy values.

Let us also briefly comment on the ideal gas on a torus with the
macro-state structure as in the combinatorial argument. For Z =1,
(the hypersurface determined by the constant momenta of the
particles) it can be shown that the motion is ergodic (cf. Lavis,
2005). Because the uniform distribution takes up more than any
other macro-region on 7', the Ergodicity Corollary implies that the
uniform distribution of the particles corresponds to a y-e-equili-
brium. Note that there is no a-e-equilibrium because none of the
macro-regions is larger than measure 1/2 (cf. Lavis, 2005, 2008).
For the ideal gas it is again crucial that the right set Z is chosen.
If instead Z = I'r were considered, the Existence Theorem would
rightly tell us that there is no equilibrium: For Z = ' the macro-
region of largest size is the one corresponding to the Maxwell-
Boltzmann distribution (1). But this distribution cannot corre-
spond to equilibrium because the momenta of the particles of an
ideal gas are constant. Hence if the momenta are not initially
distributed as required by the Maxwell-Boltzmann distribution,
they will never be distributed in this way.

Let us now turn to Example 2 of Baker's gas with the macro-
states Dyg. Here there is an y-e-equilibrium because there is a
macro-region larger than any other macro-region and the
dynamics is ergodic (Ergodicity-Corollary) (cf. Lavis, 2005). Note
that there is no a-¢ equilibrium because all macro-regions are
smaller than 1/2 (cf. Lavis, 2005).

Finally, Example 3 of the Kac-ring with the macro-states MX is
not ergodic. Yet there is still an y-e-equilibrium because the system
decomposes into ergodic components and the equilibrium macro-
region is larger than any other macro-region on each ergodic
component (except for regions of measure ¢) (Bricmont, 2001;

Lavis, 2005). It is interesting that the motion
of the Kac-ring is periodic, illustrating that an approach to
equilibrium is also compatible with periodic motion. Note, again,
there is no a-e-equilibrium because all macro-regions are smaller
than 1/2 (cf. Lavis, 2005).

7. Conclusion

What justifies the association of equilibrium with the largest
macro-region in Boltzmannian statistical mechanics? We reviewed
currently available answers to this question and found them
wanting both for conceptual and technical reasons. We proposed
a new conception of equilibrium and proved a mathematical
theorem which establishes in full generality that if there is an a-
e-equilibrium/y-e-equilibrium, then the corresponding equilibrium
macro-region is p-dominant/s-prevalent. We then turned to the
question of the approach to equilibrium, on which there exists no
satisfactory general answer so far. In our account, this question is
replaced by the question when an equilibrium state exists. We
proved the (again fully general) Existence Theorem, providing
necessary and sufficient conditions for the existence of an equili-
brium state. This theorem re-orientates the discussion about
equilibrium, which should focus on finding triplets of macro-
variables, dynamical conditions, and effective state spaces that
satisfy the conditions of the theorem. There are many triplets that
satisfy the conditions of the Existence Theorem. Finding and
describing at least some of them is a new research programme
in the foundation of statistical mechanics.

Appendix A
A.1. Proof of the Dominance Theorem

The proof appeals to the powerful Ergodic Decomposition
Theorem (cf. Petersen, 1983, p. 81), stating that for a measure-
preserving deterministic system (Z,Xz,u;,T¢) the set Z is the
disjoint union of sets Z,, each equipped with a s-algebra X and
a probability measure 4, and T; is ergodic on each (Z,,, %z, u,,)- The
indexing set is also a probability space (2,X,,P), and for any
square integrable function f it holds that

[raw= [ f du, P (10)

Suppose that the system has an a-e-equilibrium M,...eq. Appli-
cation of the Ergodic Decomposition Theorem for f = 1z, (x), where
M is a an arbitrary macro-state, yields

o) = [12,00 duz = | [ 12,00, P, (1

For an ergodic system (Z,,, Xz, , u,,, Tt) the long-run time average
LFz,,(x) (Eq. (3)) equals the measure of Zy; N Z,, (cf. Eq. (4). Hence
for almost all xe Z,

LF;, (x) = /Z 12,0 duy, = 1)t O Zo). (12)

From the definition of an a-e-equilibrium and because T; acts
ergodically on each (Z,,%, ,u,), for almost all xe Z,,, Z, =Y

a<lFy, (0= /Z 1,00 du,. (13)

A comment is in order here about why we can assume in the
statement before Eq. (13) that Z,, = Y. Since the motion restricted to a
given Z, is ergodic, either for all points in Z,, the long-run fraction of
time the system spends in the equilibrium region is greater than « (in
which case Z,, = Y), or for all points in Z,, the long-run fraction of time
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the system spends in the equilibrium region is not greater than « (in
which case Z, =Z2\Y). Hence the behaviour of states in Y can be
analysed by considering all the Z,, which are a subset of Y and all the
other Z,, can simply be set aside.

Now suppose for a moment that u,(Y) = 1. Then from Eq. (11)

a= /a dpP S Uz(ZM,oeg)- (14)
Q

Hence if 4;(Y) =1—¢, it follows from Eq. (11) that
a(l—e) <pz(Zm,.,.)- (15)

A.2. Proof of the Prevalence Theorem

The proof of the Prevalence Theorem proceeds similarly. From
the definition of an y-e-equilibrium M, and because T; acts
ergodically on each (Z,,%z,,u,)

[ 1200 iy = Lo 007 < Uy 0= [ 12, 00
(16)

for almost all xeZ,, Z,<Y and all macro-states M with
M # M, _,.¢q. Note that, as for the proof of the dominance theorem,
the behaviour of states in Y can be analysed by considering all the
Z, with Z,, c Y (because either Z, <Y or Z, = Z2\Y).

Suppose for a moment that u,(Y) = 1. Then from Eq. (11)

HzEn)+y S pz(Zm, o) 17)

for all macro-states M with M # M, _,.q.
Hence if u;(Y)=1-—¢, it follows from Eq. (11) that for all
M # M, ceq:

HzEZm)+r—e < pz(Zm, ), (18)

for all macro-states M with M s M,_,_¢q.
A.3. Proof of the Existence Theorem

Let us first consider the case of an a-e-equilibrium.

=: Assume that there exists an a-e-equilibrium M, q. We
again appeal to the Ergodic Decomposition Theorem and consider
the decomposition of the system into ergodic components
Co=Zy,2z,,1,, Tt) (cf. Section A.1).

The definition of an a-e-equilibrium and Eq. (11) imply that
there exists a M, namely M =M, such that the following
holds: for almost all xeZ, and for all components C, except,
maybe, for components C,, w € ', with uz(U,coZ,) <e

a<LFz, (X)= /Z 12, (%) dp,y = 1,2y O Za), (19)

which is the desired claim.

«: Conversely, suppose that there exists a macro-state M such
that for the ergodic decomposition into components C, =
(Zy, 27,1, Tt) it holds that

except for components C,, with w € ', u;(U,, c o Z,) <e.
It follows from condition (20) that for all xeY with
Y=Z<(UyecaZo) /"Z(Y) =1-¢

a < (Zy N Z,) = /Z 17, (%) du, = LFz, (), @1

which means that M fulfills the definition of an a-e-equilibrium.
Let us now turn to the case of a y-e-equilibrium.
=: Assume that there exists a y-e-equilibrium M,...; and
consider the ergodic decomposition of the system into compo-
nents C, =(Z,, 2z, u,, [t). Then the definition of a y-e-equilibrium
and Eq. (11) imply that there is a M, namely M = M, ., o, such that

the following holds: for almost all x € Z,, and for all components C,,
except, maybe, for components C,, w € ', with u(U, coZ,) <e

o @r N Zo) -y = /Z 12, (X) o +7 = LF7, () +7 22)

<IF; (%)= /Z 17, (%) duty = oZgy O Zo), 23)

for all macro-states M with M s M, which is the desired claim.

«<: Conversely, suppose that there exists a macro-state M such
that for the ergodic decomposition of the system into components
Co=(Zu.27,, 4y, Tt) it holds that

toZo N Zg) = p,(Zo N Zy)+y  for any M =M, 24)

except for components C,, with w € ', u;(U, c 0 Z,) <e.
Condition (24) implies that for all xeY with Y =2\(U, c o Z,),

uz(Y)=1-e¢

LF 7 (X) 17 = /Z 12,0 Ay +7 = oo O Zo) 7 25)

P20+ = @y 0 Zo) = [ 12,00 dy = LFz, () 26)

for all macro-states M with M = M. Hence M fulfills the definition
of a y-e-equilibrium.

A.4. Proof of the Ergodicity-Corollary and the Epsilon-Ergodicity-
Corollary

Proof of the Ergodicity-Corollary: From the definition of an
ergodic system (Eq. (4)), it immediately follows that if an ergodic
system has a macro-region Zy, that is f-dominant, M is an a-e-
equilibrium for a=gp. Similarly, from the definition of an ergodic
system (Eq. (4)), it follows that if an ergodic system has a macro-
region Zy, that is s-prevalent, M is a y-e-equilibrium for y=5.

Proof of the Epsilon-Ergodicity-Corollary: An epsilon-ergodic
system (Z, Xz, 7, T¢) is ergodic on a set Z with pu,(Z)=1—¢ for a
very small ¢ > 0. Hence Eq. (4) implies that if an epsilon-ergodic
system has a macro-region Z; that is p-dominant for p—e >,
LFz,(x) = p—¢ for almost all xeZ. Consequently, Zy is a a-e-
equilibrium for a=p—e. Similarly, Eq. (4) implies that if an
epsilon-ergodic system has a macro-region Z,; that is 5-prevalent
for 5—e>0, LFz, (X) > LFz,(x)+5—¢ for all macro-states M#M
and almost all x € Z. Hence Z; is a y-¢-equilibrium for y =6 —e.
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