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Abstract Extreme weather events like hurricanes occur rarely, but when they occur,
they cause immense damage. How should decision-makers, both public and private,
make decisions about such events? Such decisions face significant and often poorly
understood uncertainty. We rework the so-called “confidence approach” to tackle
decision-making under severe uncertainty with multiple models, and we illustrate
the approach with the case study of insurance pricing using hurricane models. The
confidence approach has important consequences for this case and offers a powerful
framework for a wide class of problems.
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3.1 Hurricane Maria

When Hurricane Maria hit Dominica in September 2017 it devastated the island
nation, causing landslides, widespread flooding, and damage to the roofs of almost
every home. The prime minister, Roosevelt Skerrit, had to be rescued from his
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official residence.1 The island lost all radio, cell phone and internet services after the
storm.

Each year, summer in the Northern Hemisphere brings hurricanes like Maria to
the west Atlantic. Also known as “tropical cyclones” or typhoons, these giant,
rotating storms wreak havoc in the Caribbean and the southeast of the USA, leading
to deaths, evacuations, and billions of dollars of damage each year.

Maria was one of the worst storms on record, and part of the costliest hurricane
season on record for the Atlantic, with the final bill for storm damage in 2017
exceeding £228 bn. The root of the damage is the incredibly fast winds that
hurricanes generate. The wind itself is strong enough to damage cars, trees, and
houses. A “category 1” hurricane, the lowest grade, has winds up to 150 km/h,
enough to snap branches off trees and cause flying debris. Category 3, the boundary
for a “large” hurricane, has winds strong enough to rip the entire roof from a house.
At category 4, not even the wooden walls on American houses withstand the storm.
But most hurricane damage comes from water, whipped up by the roaring winds.
Meteorologists call this “storm surge”: sea water is pushed into fierce waves, metres
higher than the usual sea-level. The water slams into the coast and causes flooding
for kilometres inland. Coastal buildings are demolished by the frequent pounding of
waves during the storm, and flooding seawater erodes beaches and coastal highways,
and undermines the foundations of buildings. It is hard to typify the damage caused
by category 5 storms like Maria, as this is a catch-all for wind speeds above 252 km/
h. They are catastrophes almost without parallel.

3.2 Extreme Weather Events and Climate Change

Hurricane Maria is an example of an “extreme weather event”. An extreme event is
one that occurs relatively rarely but has huge impact when it occurs. Droughts, heavy
rainfalls, floods, and heat waves, as well as the increased incidence of extremely high
sea levels or the more frequent occurrence of particularly hot days are extreme
weather events. Not only are these events highly destructive in themselves; they
often also have devastating consequences. Heatwaves cause the deaths of vulnerable
people; heavy rainfalls cause landslides; and the more frequent occurrence of hot
days creates ideal conditions for wildfires.

In its most recent assessment report, the Intergovernmental Panel on Climate
Change (IPCC), the United Nations body for assessing the science related to climate
change, comes to the conclusion that climate change, whether driven by natural
causes or human activities, can result in changes in the likelihoods of the occurrence

1See, for example, https://www.nytimes.com/2017/09/19/world/americas/hurricane-maria-carib
bean.html
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or severity of extreme weather events.2 The IPCC also reports that such changes
have indeed been observed since about the 1950s. They report, for instance, that it is
likely that the frequency of heat waves has increased in large parts of Europe, that
anthropogenic greenhouse gas emissions are likely to be a contributing factor, and
that further changes in the future are very likely. They report similar findings for
other extreme evens like extremely high sea levels and tropical cyclones.

If we don’t want to be hit by these events unprepared, we have to plan. Individ-
uals as well as organisations will have to adapt to the fact that in the future we are
more likely to be exposed to extreme weather events than we were in the past, and
that these events are likely to be more severe than the ones we have hitherto
experienced. Adaption policies put measures into place to help people cope with
the effects of climate change, for instance by building flood defences, making
buildings hurricane-proof, or increasing the capacity of water storage facilities.

Adapting our infrastructure so that it is able cope with extreme events is expen-
sive, and adaptation requires significant resources. But how much exactly should we
invest into adaptation measures? This will depend on what we think the damage that
such events cause will cost. On the one hand, we don’t want to overspend and invest
significantly more into adaptation than any potential damage would be. On the other
hand, we don’t want to underspend and make ourselves vulnerable to huge losses.
To design concrete policies and to secure their implementation, an assessment of the
potential damages and their associated costs is indispensable.

Nowhere else is the price of a disaster as “in our face” as in the insurance sector.
An insurance company will put a price on the potential damage, assess the likelihood
that the damage will occur, and then combine the two into the price of an insurance
policy. If they price their policies too low, they will go bust; too high and no one will
buy their products. Insurers have to strike the same kind of balance that adaptation
policies do. In fact, many of the calculations are the same: how much a state should
invest into, say, flood defences will depend on what the expected damage due to
flooding is. Looking at insurance pricing therefore gives us insight into how such
assessments are made, and the problems that they encounter.

3.3 Hurricane Insurance

For people living in Florida, or on a Caribbean island, the risk of hurricane damage
to their home is one of the most serious they face. Naturally, an insurance industry
has grown around this risk, offering home-owners protection against the various
forms of destruction hurricanes can bring. Residents buy insurance policies that

2IPCC (2013, 121). For detailed overview of expected changes in extreme weather events of
different kinds and their likely causes see IPCC (2013, 110). For a discussion of climate change
and the philosophical and methodological question that it raises see Bradley and Steele’s (2015),
Frigg et al.’s (2015b, c), and Parker’s (2018).
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guard them against such damage, at frequently high cost: a house insured for
£120,000 will cost £2500–6000 per year.3

The price is so high in part because hurricanes cause significant damage, but also
because insurers are so uncertain about how risky it is to insure. If you want to sell
insurance against something the recipe is simple, with just three ingredients. First,
you need the likelihood of the event you’re covering (the hurricane). Second, you
need an estimate of how damaging these events are when they occur — how much
damage, in pounds, does the average hurricane cause in a £120,000 house? Third,
you need to obey insurance regulations that tell you how much money you need to
have available at any given time. These rules exist to ensure that insurance compa-
nies don’t go bankrupt and have the money to pay for claims when customers
make them.

But the first two ingredients are difficult to work out for hurricanes. Calculating
the likelihood of destructive hurricanes requires a detailed understanding of the
science of meteorology. Estimating the vulnerability of a building to hurricane
damage — in order to determine the monetary value of the damage — requires
knowing how it was built, and how the building-materials will withstand the wind
and water effects of the storms.

The scientific challenge of predicting hurricanes raises some surprising philo-
sophical challenges. In 2016, we were approached by a team of scientists working
for an insurance company who had been reading our previous philosophical work on
scientific modelling and decision-making in the face of severe uncertainty. They
asked for our help, and thus began a research collaboration on the philosophical
challenges of insuring against hurricanes — the first ever, we would bet! In this
article, we will share some of what makes hurricane insurance so philosophical
interesting. We will look at how such insurance is done today, and why insurers were
so unsatisfied that they brought in the philosophers.

3.4 How Do You Price a Hurricane Like Maria?

In most kinds of insurance (health, fire, theft, and so on), insurers calculate the
likelihood of the event being insured against by looking at historical statistics. When
buying an insurance policy, facts about you (or your house, car, etc.) are used to
estimate how likely you are to experience the “event” you are insuring against (fire,
theft, etc.). Your car insurance premium is calculated using things like your post-
code, age, gender, and even the colour of your vehicle. Insurers looks at the statistics
for burglary, accidents, and so on, for people in your area, of your age and gender, or
with your colour car. From the insurer’s point of view, they do this to try make it
more likely that they’ll make a profit from your insurance. From your point of view,

3See https://www.sapling.com/7958883/average-cost-hurricane-insurance
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it is important that they do this so that they don’t run out of money before they can
pay your insurance claim when you make it.

In the case of hurricanes, insurers can’t do this, simply because there isn’t enough
data on destructive hurricanes: even in the USA, which has sophisticated records and
experiences hurricanes in most years, there is too little data for actuarial modelling.4

HURDAT2, the official database for hurricanes striking the Atlantic coast of the
USA has ~300 storms to date and only 1/3 of those qualify as “major hurricanes”. If
the dataset is split by region, the numbers drop precipitously.5 Compare this to the
6 million car accidents per year in the USA, and you can see why insurers have a
much harder time with hurricanes than cars.

But if you live in a hurricane-prone region like Dominica, or south Florida, you
need hurricane insurance. Insurers also know that, as destructive as Hurricane Maria
was, such events are rare. They should be able to offer sustainable hurricane
insurance, if only they can reliably fill the gap that the missing statistics usually
play in their pricing process.

The probability of a hurricane hitting south Florida can be calculated in another
way than the statistical approach used for car insurance: using scientific models.
These models contain numerical representations of hurricanes: equations from
physics and statistics that describe how the storms form, how they grow, and how
they move across the Atlantic. In part, these models are based on what we know
about the physics of hurricanes. For example, we know that tropical storms get
the energy that makes them so ferocious from the sea: the warmer the sea-surface, the
more energy is available to “drive” a large storm. But the models also use the
statistics we have on where exactly in the Atlantic past storms formed, on periods
of higher and lower hurricane activity, and so on.

The insurers treat the models as experts: they take the outputs of their models as
an input for insurance pricing, an input that they can’t easily check because of the
specialist knowledge required to produce it. They have to do this, if they want to
avoid hiring their own scientists and building their own models, but it raises some
problems.

Insurers know that scientists disagree; not only about some key questions of
hurricane science, but also about how to take that science and put it into a computer
simulation. The result is that there isn’t just one model of hurricane formation in the
Atlantic; there are many. When the Florida Commission on Hurricane Loss Projec-
tion Methodology, the industry regulator who licenses modelling firms, carried out

4For a discussion of hurricane modelling for insurance, see Shome et al.’s (2018), and for a
discussion of hurricane risk the contributions to Collins and Walsh’s (2019).
5We’re referring to the number of datapoints in HURDAT2 for hurricanes that make landfall on the
USA’s Atlantic coast. The full database is at http://www.aoml.noaa.gov/hrd/hurdat/All_U.S._
Hurricanes.html
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their 2007 assessment of the modelling industry, they gathered a collection of
972 models!6,7

Just knowing about these disagreements makes life hard for insurers, as they have
no good way of choosing which model to buy. (Or which modelling company to
hire.) The reasons for the disagreements are Greek to them, but any decision they
make will boil down to a decision between the different models on offer. But insurers
don’t like the thought that they’re implicitly making a choice on scientific or
modelling questions they don’t understand.

But if you are selling hurricane insurance, there is another option: you can hire a
company like Risk Management Solutions (RMS), a leading modelling firm that
uses a collection of thirteen models.8 RMS’s models represent (some of) the different
views present in the scientific community. Rather than taking a stand on these
disagreements themselves, they try to have a model for each major position. As an
insurer, this is an attractive option: it offers you a way to stay out of scientific
disputes. But, as we will now show, it doesn’t quite solve the problem in the way
insurers might hope.

3.5 Growing Dissatisfaction with Hurricane Pricing

RMS uses multiple models because they understand the insurers’ discomfort with
scientific uncertainty. They also know that insurers need a definitive answer on how
to price their products. And so, like many others in their position, RMS combines the
outputs from their thirteen models into a just one number. So, any time an insurer
asks the RMS software for the probability of a hurricane hitting a particular place,
they don’t see thirteen different probabilities, they see one: RMS’s recommended
view, called the Medium-Term Rate.

The Medium-Term Rate is constructed by averaging the answers provided by
each of RMS’s thirteen models, in what is called a weighted average.9 In a simple

6The report is FCHLPM, “Report to the Florida House of Representatives Comparison of Hurricane
Loss Projection Models,” 2007, https://www.sbafla.com/method/Portals/Methodology/Meet
ings/2007/20071105_RubioReport.pdf. For a discussion of the 972 models, see Jayanta Guin,
“Understanding Uncertainty,” AIR Worldwide blog, 2010, http://www.air-worldwide.com/
Publications/AIR-Currents/2010/Understanding-Uncertainty/
7For discussions of model ensembles and their relation to uncertainty see Knutti’s (2010),
Marinacci’s (2015), Parker’s (2010, 2011, 2013), and Stainforth et al.’s (2007a, b). For a discussion
of probabilities in relation to ensembles see Frigg et al.’s (2015a) and Smith et al.’s (2014).
8Tom Sabbatelli and Jeff Waters, “We’re Still All Wondering—Where Have All The
Hurricanes Gone?,” The RMS Blog (blog), October 27, 2015, http://www.rms.com/blog/201
5/10/27/were-still-all-wondering-where-have-all-the-hurricanes-gone/
9Tom Sabbatelli, “Catastrophe Modeling—Part 2,” The RMS Blog (blog), September 2, 2017,
http://www.rms.com/blog/tag/catastrophe-modeling/page/2/; InsuranceERM, “RMS Responds to
AIR’s Attack on Hurricane Risk Modelling,” Insurance ERM, May 29, 2018, https://www.
insuranceerm.com/news-comment/rms-responds-to-airs-attack-on-hurricane-risk-modelling.html
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average, the answers are added together the answers and divided by 13. This gives
each model equal say, or “weight”, in the final answer. In a weighted average, some
models can count more than others. RMS decides how much of a say to give to each
model by scoring each one on how well it accounts for the past hurricane record.

They measure this by setting each model a “predictive test”. The test asks them to
calculate the hurricane activity during some historical period, like 1970–1975. When
making these calculations, the models are only allowed to use data from before 1970.
Each model’s outputs for 1970–1975 is compared to the actual data for that period
and given a score. The models are tested against many periods, and their overall
scores are taken as a sign of each model’s skill at predicting hurricanes. These scores
then become weights in the average: the better a score, the more that output counts
towards the overall answer.

The insurers aren’t satisfied with this approach (Philp et al., 2019). That’s partly
because it is their job to worry about uncertainty, and to constantly strive to gain a
better understanding of what they’re insuring. But there are specific worries in the
case of hurricane insurance, and model averaging in particular, that brought them
to us.

The biggest problem is that averaging conceals important information from
decision makers about just how uncertain the underlying science is. The averaging
process, and the neat software packages that present the averaged results to insurers,
focus attention on just one number. To the underwriter using the software, the
underlying messy science, and the even messier reality, are swept under the carpet
and they tend not to think about the fact that scientists disagree about important
questions in hurricane science and modelling.

Although they can’t understand the content of these disagreements, the people
pricing insurance currently receive no information about them at all. But they could,
we think, understand and make use of some facts about the disagreement. How
“spread out” the results from different models are is important information, telling us
something about the state of scientific knowledge about a question. The more spread
out the results are, the more uncertainty and imprecision there is. This, we say, is
valuable information that the decision-maker should use — and, importantly, can
use even if the details of the disagreement are beyond their grasp. Later we will show
how they can use it.

There are also two more technical problems with averaging model results. The
first is that the predictive tests that are used to weigh each model’s skill use historical
data. This data, remember, is too little to use directly for insurance pricing — that is
why we needed the simulation models in the first place. But here, the historical data
is playing a key role, behind-the-scenes, in determining how the models are evalu-
ated. It remains a weak link.

The second is that there isn’t just one way to score the test. For predictive tests
like these, there are many different “scoring rules”. To see why, let’s look at a
simpler scenario. You want to know whether it will rain tomorrow, and so you check
three different weather services. They say it is 30%, 50% and 80% likely to rain,
respectively. Now if it does rain, how do we score those predictions? Some things
seem straightforward: the highest prediction did best, because it did rain. But how
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much better did it do than the 50% prediction? On the one hand, 80% is 30 percent-
age points above 50%, which should play a role in measuring the difference between
them. On the other hand, 50% is barely a prediction at all— it is what you might say
if you didn’t know anything at all. Shouldn’t there be a bonus for “sticking your neck
out”?

Statisticians disagree about how to answer these questions, with the result being
that there are a great many competing rules.10 These rules can disagree widely:
ranking the predictions in completely different ways, and therefore leading to very
different average answers.11 This puts the insurer in a difficult position: they went to
the modelling company because hurricane scientists disagreed, and they couldn’t
adjudicate that disagreement for themselves. But now it turns out the modellers
themselves face a disagreement amongst still other experts: statisticians disagreeing
over scoring rules. If insurers don’t want their prices to reflect just one view of the
science of hurricanes, they can reasonably say they don’t want it to reflect just one
view of the statistics of scoring predictions, either. But what can they do?

The insurers we work with worry about these problems. They try to compensate
for them, “factoring in” their dissatisfaction by, for example, inflating the average
probabilities. But while the worry is reasonable, they have no good way of choosing
how much to inflate them by.

3.6 Less Precision, More Flexibility

Working with our insurance partners, we have developed a different way to price
hurricane insurance.12 It avoids these problems with averaging and gives insurance
decision-makers a more flexible procedure for navigating scientific uncertainty.

Our approach starts with a simple thought: instead of trying to compress the
disagreement between the three weather predictions (30%, 50%, 80%) down to one
prediction (like the average, 53%), why not simply give a range? “It is 30–80%
likely to rain tomorrow.”

That’s one way of dealing with the disagreement, but it creates its own ques-
tions.13 The simplest question is: how exactly do we form the range? 30–80%
includes all the predictions, but often if we consider every viewpoint we end up
with unhelpfully wide ranges: if the probability is 30% there is no need for an

10See for example the list of rules at Australian Bureau of Meteorology, “Forecast Verification,”
2017, https://web.archive.org/web/20171125111801/https://www.cawcr.gov.au/projects/
verification/
11For a discussion of this problem in the case of climate models, see Stainforth et al.’s (2007a).
12Our approach here reworks a recently developed decision theory called the confidence approach
to tackle inputs from model ensembles. For a discussion of this approach see Bradley’s (2017) and
Hill’s (2013, 2019).
13For a discussion of such “imprecise probabilities”, the questions they raise, and how to make
decisions with them, see S. Bradley’s (2019).
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umbrella, but if it is 80% one is practically required. If we consider all the options,
we might end up always carrying an umbrella, which would be a nuisance.

This raises our second question: how do you make a decision when given a range
like 30–80%? If you’re told just one number, say 50%, it is simple. You think about
your options (take an umbrella, don’t) and consider what’s likely to happen. If you
take the umbrella, there’s a 50% chance you carry it for no reason, and a 50% chance
it rains and you use the umbrella to stay dry. If you don’t take an umbrella, there’s a
50% chance you enjoy your day unencumbered, and a 50% chance you get wet in the
rain. The classic advice from economists is to “maximise expected utility”; in other
words, to pick the option that does best on average. Some numbers can help to see
how this works: let’s say you really hate getting wet and represent that with the
number�10. You don’t like carrying an umbrella unnecessarily, but that’s only �2.
Staying dry using your umbrella is better than that, let’s say +4. Finally, enjoying a
sunny day unencumbered is best, +6. If you don’t carry an umbrella, then you might
enjoy a sunny day (50% � + 6 ¼ 3 units of expected utility), but you might also get
wet (50% � � 10 ¼ �5). So, your total expected utility is �2 if you don’t take the
umbrella. If do you carry the umbrella, there’s a chance you do so unnecessarily
(50% � � 2 ¼ �1) and a chance it keeps you dry (50% � + 4 ¼ 2), which gives a
total of +1. You choose the act with the higher expected utility, so you take the
umbrella.

But, if you have a range of probabilities for rain (30–80%) and a range for no rain
(20–70%), you can’t follow this advice. Economists and philosophers have offered
various alternative rules for deciding with ranges of probabilities; one example is to
be cautious and choose the option that does best in the worst-case scenario.14 A
problem for all of these rules is that they’re one-size-fits-all, and you might not want
to commit to just one way of making your decision. The economist’s rule about
maximising expected utility is meant to be universal, and so are the alternatives for
ranges. But in practice, people decide differently based on what is at stake. If we’re
deciding something trivial, like taking an umbrella when we leave the house, we
might be happy to pick the middle of the range and decide using it. But if it is a life-
and-death decision, we can’t afford to ignore worst-case scenarios, and so we’d want
to be more cautious and think about the full range.

3.7 The New Method

Our method for making this kind of decision is designed to avoid these problems.
Here is a colourful example to show how it works. Suppose you are deciding

whether to place a bet on your favourite contestant, let’s call him Kevin, winning a
dance contest. To place the bet you pay £50 upfront; if he wins you are paid back
your £50 and receive another £50, if he doesn’t win you lose your £50. So, you

14For a review of various alternatives, see Heal and Millner’s (2018).
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should expect this bet to make you money if the probability of Kevin winning is
more than 50%.

But since you don’t know the probability of Kevin winning, your situation is a bit
like the weather predictions case. So, we will start off by working through various
probabilities for him winning, and see which you accept. We start with the widest
range: the probability of Kevin winning is between 0% and 100%. You should
obviously believe that, but it is no help. We then narrow down the range, in various
ways and see which you accept. This is based just on your subjective estimate of his
chances, using your extensive experience in dance venues, your knowledge of how
judges rule on performances, and your familiarity with Kevin’s skills. Let’s say that
as we suggest various ranges to you, you accept the claim that his chance of winning
is between 20–80%, and 30–50%, and so on, down to your best guess for a single
number: 42%.

Now if we forced you to do this, it would be natural for you to protest that you
aren’t very sure at all about the precise number 42%. You’re right. The crucial thing
to realise is that your protestations hold the key to solving the problem. In fact, you
will likely have protested about the 30–50% interval. In fact, every move toward a
narrower interval may, and likely will, go hand in hand with decreasing confidence.
The method asks you to pay attention to how your unease increases and keep track of
your confidence in each of these claims, where “confidence” means how certain you
feel that the chance of Kevin winning is in a certain range (or, in the case of 42%, is
equal to that number). You should be less confident about the more specific claims;
indeed, it would be incoherent to be more confident that the “right” probability is
42% than that it is between 30% and 50% because that range includes 42%!

You now have a ranking of your different estimates: most confident 0–100%,
next most 30–80%, and so on down to least confident 42%. That tells us how the
different ranges compare to one another. But, remembering our example of the
umbrella decision and the life-threat decision, we want to get a sense of how
confident you are in absolute terms. If your bet was for your life, rather than £50,
you would want to be very confident in your probability estimate. Not just more
confident than in some other guesses, but confident enough to bet your life on.

We can do this by putting the different ranges of probability you considered into
groups, which we’ll call Low, Medium and High confidence. Which category each
range ends up in depends on howmuch evidence you used when you decided that the
chance of Kevin winning was in that range. The more evidence, the higher the
category. Imagine two people making this same bet. Joe is a dance aficionado; he
goes to dance shows regularly and knows a lot about these competitions. He knows
about each of the competitors, and how they’ve performed against each other before.
Using that experience, Joe judges Kevin’s chances to be between 30% and 50%.
Roman, on the other hand, is new to dance. He hasn’t been to a dance show before
and has only just heard of Kevin. He also judges Kevin’s chances to be between 30%
and 50%, but it is an uninformed guess. Joe’s judgement would get High confidence,
but Roman’s only Low.

Let’s say that your experience with dance competitions, and what you know
about Kevin, is enough to justify categorising your 30–50% estimate as Medium
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confidence; your 20–80% estimate as High confidence; and your 42% estimate as
Low confidence.

Why do all this? To come to a decision two further issues are crucial: the
importance the decision has to you and your attitude to risk. The decision of taking
an umbrella is trivial and hence not very important, but if you’re shot if you get it
wrong, then the decision really matters. How you decide will also depend on whether
you value safety or whether you are willing to take risks. An adequate decision
algorithm must take these two factors into account, and having various ranges of
probabilities ranked by the confidence you attach to them helps you to do so. We
now see how.

The “stakes” of a decision reflect how important the decision is to you. We’re
going to think of stakes as a number on a 0–1 scale, where 0 is totally unimportant
and 1 is the most important decision you can imagine. There are different ways we
could measure the stakes of a decision, but for now we’ll simplify and say that for
you the importance of a decision is determined by the worst possible outcome. So in
the example of the dance competition the “stakes” are determined by the money you
stand to lose: the £50. How important is losing £50 to you? If you are poor, it might
be very important! If you’re rich, you might not even notice it. For the moment let us
say you think this is a moderately important decision and assign it stakes s ¼ 0.5.

Second, we want to know how cautious you are. If Joe is very cautious, he might
want to be very confident when he makes choices, even if there isn’t much at stake.
Roman, who is much bolder, is willing to make even important decisions using little
evidence. What we want to know for your bet is your answer to the question “how
much confidence do you need in order to make moderately important decisions, with
stakes around 0.5?” The answer to the question should be one of our confidence
levels: Low, Medium, or High. Joe, who is very cautious, will answer High. Roman,
who is gung-ho, will say Low.

Let’s say that you fall in between them again, and you answer: Medium. This tells
you which one of your probability estimates you should use, based on your caution
and the stakes (the importance of the decision to you). When we categorised your
probability estimates, we put 30–50% into the Medium category, so you should use
30–50% to make your decision.

This is our answer to the first problem for deciding using ranges: which range?
The answer is: the range that fits your desire for confidence, which is based on how
cautious you are and what is at stake.

You can now use one of the rules that economists and philosophers have
suggested for deciding using a range. Let’s keep things simple and say you’ll use
the cautious rule, by choosing the option that you expect to do best if things turn out
for the worst, from your perspective. This rule is called “maximin” expected utility.
Here’s how it works: you start with one of the options (e.g., bet on Kevin), and
calculate the expected utility of that option using each of the probabilities in the
range (which here is 30–50%). You’re looking for the minimum expected utility the
option has. So, you start by working out the expected utility for 30% (for the moment
we’ll pretend money and utility are the same): 30%� 50 + 70%�� 50¼�20. You
do the same for all the probabilities in the range, working up to 50% where the
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expected utility is 0. The minimum of all these values is �20, so that’s the only
number you need to care about for the “bet” option. You then do the same for the
“don’t bet” option. This is much simpler as you don’t lose or gain anything, so it is
always 0. You then compare these minimum values and choose the option with the
highest worst-case utility (hence, maximin). In this case, that means “don’t bet” as
0 is greater than �20.

You would only expect to make money betting on Kevin if the probability of him
winning is over 50%. As it gets lower than that, you expect to lose more and more.
So because you think the probability of him winning is in the range 30–50%, it is a
bad bet! You don’t expect to make money based on what you think the probabilities
are, and there’s only one way you could just break even: if things turned out for the
best, and the probability was at the very top of the range you think it is in. So, you
don’t bet.

3.8 Insurance Pricing

That all seems like a lot of effort for betting on a dancer. But in our more complicated
insurance context, the machinery of confidence, caution and stakes does important
and useful work.

Let’s go back to talking about hurricane insurance. Let’s imagine an insurer who
wants to sell a single insurance contract on house damage due to hurricanes. This is
their first contract, and it is for insurance against an event, which we’ll label E: “a
hurricane strikes Fort Lauderdale in 2025”. The contract is for a total value of
£100,000 and it is a binary contract: it pays out either £0 if the event does not
occur, or £100,000 if it does (there are no intermediate values for partial damage).

Pricing insurance involves working out how much you need to charge to make a
profit, in a way that is not too different from deciding whether to place a bet. As in
any business, you make a profit in insurance when you take more money in than you
pay out. So, the annual price charged for a contract (money in) needs to be larger
than the sum of two basic expenses: the expected pay out to customers claiming on
their insurance contracts, and the cost of holding money so that it is available to pay
those customers if the need arises. Both of these depend on the probability of the
hurricane striking Fort Lauderdale. For payments out, that’s obvious: you pay out
when the hurricane hits. For money held, that’s less obvious but it is because the
insurance regulator requires insurers to hold capital according to a formula which
uses the probability that they will pay out.

Here is an example. If the probability of the hurricane is 1%, then you should
expect to pay 1% of the £100,000 insured in any year. That’s the first expense: an
expected pay-out of £1000. For the cost of capital holdings, we’ll simplify and say
that the insurer needs to hold the whole £100,000. (This sounds reasonable: after all,
if I claim on the contract, I want them to have all £100,000! But in reality, insurers
have many customers and they only ever hold a fraction of the money they would
need to pay out if everyone claimed at once.) If the cost of capital is 5%, then the
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second expense, cost of holding capital, is 5% of £100,000 or £5000. So, to make a
profit, the insurer must charge more than £6000 per year.

That tells us how insurance is priced if we know the probability of the event. But
our original problem was: it is very hard to figure out these probabilities!

Our insurer will estimate this probability by talking to some scientific modellers.
Let’s imagine that, like Risk Management Solutions, they use a collection of models
to advise the insurer. Table 3.1 shows how the information that the insurer gets
looks: it’s a list with 13 probabilities, each provided by one model constructed by the
scientists. The list also contains each model’s weight, which is, as we have seen,
obtained by scoring each model in a predictive test. In our example Model 1 scored
best and gets a weight of 23.7%. Model 10 scored worst and is only going to count
for 1.6%.

Remember that in the “standard” approach, insurers will calculate a weighted
average of these probabilities. Using those weights, the weighted average probability
is 0.0072. We can now price this contract, just as we did above if we take this
average to be the probability for the event of a hurricane striking Fort Lauderdale to
occur. The first expense, expected pay outs, is 0.0072 � 100,000 ¼ £720. The
second expense will be the same as before, £5000. So the minimum price is £5720.
As we noted above, concerned insurers often inflate these averages for “safety”. This
might be as crude as doubling the probability from 0.0072 to 0.0144. Going through
the calculations with that probability, we get £6440.

3.9 Pricing with Confidence

Pure averaging and averaging with these ad hoc adjustments are unsatisfactory
methods. The confidence approach offers an attractive alternative. To apply the
confidence approach, we start with forming all the ranges of probability that the
decision-maker accepts. The insurer does what you did in our dance example: it
gathers all the evidence it can get. This includes all the model results, and what the
skill score says about them. But it is not restricted to that: the insurer can take
different skill scores into account and see whether they agree; or consider the nature
of the different models in the ensemble and how they have been constructed; or
weigh up the nature of the scientific disagreements (are they disagreements over
principles, or over the application of principles, or over parameter values, or over the
use of numerical techniques, or . . .); or it can talk to different scientists, including
those involved in the construction of the different models, to get the full picture of
the state of play in the field. Based on all the evidence gathered, the insurer will then
construct various intervals and form an opinion about how confident it can be in
these intervals.15

15The details of this are discussed in our (2021).
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We hope this sounds like common-sense to you. But notice that common-sense is
not how things are currently done. Alternative skill scores are not considered when
calculating weighted averages, and no other sources of information about either the
models, the modelling process, or the state of knowledge in the field is taken into
account. Opening up to these issues will allow insurers’ scientists to form a much
more nuanced picture of the available evidence for and against various scenarios,
and come to better founded judgment about the trustworthiness of model outputs,
than they could by uncritically relying on mechanically calculated skill scores.

Assume now that the science team of the insurer has gone through this process
and, considering all available evidence, has come to the conclusion that it should
consider three intervals: [0.007,0.0071] with confidence level Low, [0.0068,0.0076]
with confidence level Medium, and [0.0061,0.0091] with confidence level High.

The insurer now has to think about the stakes involved in this decision. This
contract is the insurer’s first; it will be their whole business and so the risk of going
bust is high. Still, no one’s life is at stake and there is no impact on anything else
(e.g., no other business which might be taken down). So, the insurer concludes that
their stakes are moderately high, s ¼ 0.75.

Next in line is cautiousness. As insurance against natural catastrophes involves
significant uncertainty, this insurer can’t be too cautious. So, let us suppose that they
only demand High confidence for important decisions of stakes 0.9 or higher. For a
decision like ours, with stakes 0.75, they’re happy with Medium confidence.

Now we look at the intervals above and see that the relevant interval for that
confidence level is [0.0068, 0.0076]. The insurer can now apply the same cautious
decision rule we used before, maximin expected utility, and make the choice that
turns out best if things go as badly as possible. In insurance, higher probabilities are
worse, because they make it more likely you need to pay out. So, they care only
about the largest probability in this range, 0.0076. The first expense, expected pay
out, is 0.0076 � 100,000 ¼ £760. The holdings are exactly as before. So we end up
with a minimum price of £5760.

Pricing method Price
Averaging 5720
Averaging + “safety” factor 6440
Confidence 5760

It is now interesting to compare the three methods. The “pure” average price is
£5720, but as we saw earlier, it has a lot of problems associated with it. The “safety”
price, which involves ad hoc adjustments to the average, is much higher, £6440. Our
new confidence price is only a little higher than the average at £5760. But to get
there, the insurer had to follow a completely different procedure. They used the full
set of model outputs. The price depends on how important the decision is, and on
how cautious the insurer is. In other decisions, they will get completely different
answers. On the other hand, the average and safety prices are always calculated the
same way.
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3.10 Better Decision-Making

Insurance is meant to put a “price on risk” so that people can pay protect themselves
from the unexpected. Insurers would also like to put a price on the kind of uncer-
tainty that we discuss here: not knowing what the probability of some event is. The
current options available to insurers are all ad hoc and there is no guarantee for
insurance companies that their staff are responding to different risks (hurricane,
earthquake, wildfire) in a common and systematic way.

Our approach allows insurers to systematically set this kind of “uncertainty
premium”. For an insurance company, three of the ingredients discussed above
will be a matter of policy. They will need to agree on a way of measuring stakes
that allows them to compare the different kinds of decisions they make and decide
which are more and less important. Cautiousness can similarly be determined by a
high-level decision about how much confidence to demand for decisions of various
stakes. Finally, a decision rule will need to be selected; either maximin expected
utility or one of its competitors.

With these three elements in place the confidence approach provides a recipe for
pricing insurance that is sensitive to all of the evidence available for that decision and
which responds naturally (through the cautiousness and stakes) to the different
nature of each decision taken. This kind of flexible but systematic treatment of
uncertainty is what insurers tell us they have been missing in catastrophe insurance.

The last two paragraphs also demonstrate a second benefit: the confidence
approach fits naturally with the kind of distributed decision-making and corporate
responsibility found in large insurance companies. The different parts of the recipe
are naturally provided by different stakeholders. The cautiousness function is ulti-
mately determined by the shareholders’ appetite for uncertainty. The way of deter-
mining stakes will be set by senior management in charge of portfolio management
and capital allocation. The probability functions themselves, along with their nesting
and grouping into confidence levels, come from the science department who cover
that particular risk. This is a better fit with how insurance decision-making should
work than having underwriters “adjust” scientific estimates of probability
individually.

Finally, looking beyond the insurance case, the method we outlined is applicable
in all instances of decision-making under uncertainty. This is because nothing
depends on the evidence being provided in form of an ensemble of models. The
multiple sources of information be experts who hold diverging views, or they can be
a mixture of different kinds of sources.16 The “distributed” nature of the implemen-
tation can be an advantage also in other contexts, where different stakeholders
will provide the probability functions, and determine the stakes, and set the cau-
tiousness function, which can be a beneficial setup in many social situations.

16For a discussion of expert elicitation see Cooke’s (1991), Morgan’s (2014) and the contributions
to Martin and Bouman’s (2014). For a discussion expert elicitation in the context of climate change
adaptation see Thompson et al.’s (2016).
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