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A gas prepared in a nonequilibrium state will approach equilibrium and stay there. An
influential contemporary approach to statistical mechanics explains this behavior in terms
of typicality. However, this explanation has been criticized as mysterious as long as no
connection with the dynamics of the system is established. We take this criticism as our
point of departure. Our central claim is that Hamiltonians of gases that are epsilon-ergodic
are typical with respect to the Whitney topology. Because equilibrium states are typical,
it follows that typical initial conditions approach equilibrium and stay there.

1. Introduction. A system prepared in a nonequilibrium state and then iso-
lated from its environment will undergo a state transition approaching, and
eventually reaching, equilibrium, the final state inwhich the systemwill stay.
Well-known examples of this process include the spreading of gases, the
cooling of coffee, and the uniform spreading of milk in tea. It is the aim of
statistical mechanics (SM) to explain this aspect of the behavior of a system
in terms of the mechanical laws governing the dynamics of the system’s mi-
croconstituents (i.e., the atoms or molecules from which it is made up).

An influential contemporary approach to SM regards typicality as the
crucial ingredient of such an explanation (see, e.g., Goldstein 2001). Intui-
tively speaking, something is typical if it happens in the vast majority of
cases: typical lottery tickets are blanks, and in typical long series of dice
throws the side with four spots faces upwardwith a relative frequency of 1/6.
The leading idea of a typicality-based version of SM is to explain why sys-
tems approach equilibrium and then stay there, by showing that such behav-
ior is typical pretty much in the same way in which blanks and sequences
with a relative frequency of 1/6 are typical. However, this explanation has
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been criticized as mysterious as long as no connection with the dynamics
of the system is established (Frigg 2009, 2010b). We take this criticism as
our point of departure and make a first step toward demystifying typicality
by establishing a connection with dynamics.

SM comes in different nonequivalent formulations. In what follows we
restrict attention to Boltzmannian SM (BSM), which is the formalism in
which typicality-based versions of SM are usually presented.1 A further re-
striction concerns the kinds of systems we investigate. While BSM in prin-
ciple covers a variety of systems, we restrict our attention to gases. The
successful applications of BSM are in the theory of gases, and there remain
important open questions about whether, and if so how, it can be applied to
liquids and solids. For this reason, gases provide a good starting point.

We begin by introducing the essentials of BSM (sec. 2), which paves the
ground for introducing the typicality argument (sec. 3). We then argue that
epsilon-ergodicity is the sought-after dynamical property (sec. 4) and in-
troduce the Whitney topology as a physically relevant topology with re-
spect to which typicality claims as regards Hamiltonians should be formu-
lated (sec. 5). The central claim of the article is that Hamiltonians that are
epsilon-ergodic for the energy values relevant to gases are typical in the class
of perturbed Lennard-Jones Hamiltonians (sec. 6), which puts the typicality
argument on solid footing (sec. 7).

2. Boltzmannian Statistical Mechanics. Consider a gas consisting of n
particles moving in three-dimensional space. From themicroperspective, the
gas is a collection of molecules or atoms, and its mechanical state is de-
scribed by a point x, its microstate, in a 6n-dimensional phase space G. We
assume that all particles obey the laws of classical Hamiltonian mechanics.
Since by assumption the gas is isolated from its environment, its energy E is
conserved, and the motion of the system’s microstate x is confined to a
6n21-dimensional energy hypersurface GE. The phase flow ft (t denotes
time) on the energy hypersurface GE satisfies the Hamiltonian equations of
motion, and sx : R→ GE; sxðtÞ5ftðxÞ is the solution originating in x. The
phase space comes endowed with the Lebesgue measure m, which can be re-
stricted toGE. Liouville’s theorem states that m is preserved under the dynam-
ics of the system, and it can be shown that the restriction of m to GE, mE, is also
preserved. In systemswith finite energy (such a gases confined to containers)
mEðGEÞ is finite. Thus, we can always normalize the measure on GE so that
mEðGEÞ51. In what follows we assume that mEðGEÞ has been normalized,
which has the effect that mE is a probability measure on GE. The triple ðGE;
mE; ftÞ is a measure-preserving dynamical system.

1. For a survey of the different approaches to SM and detailed discussion of BSM, see
Frigg (2008).
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From a macroperspective, the condition of a gas is characterized by its
macrostate. In keeping with a long-standing tradition, we assume that there
are only a finite number of such macrostates:Mi, i51; : : : ; m. Two of these
are of particular importance: the state at the beginning of a process, the past
state of the system, and the state it reaches at the end, the equilibrium state.
Without loss of generality, we assume that the labeling of the macrostates is
such that M1 is the past state and Mm the equilibrium state, and to make the
notion more intuitive we set M15Mp and Mm5Meq:
At the heart of BSM lies the posit that macrostates supervene on micro-

states (i.e., every change of the macrostate of a systemmust be accompanied
by a change of its microstate). This is compatible with there being many mi-
crostates corresponding to the same macrostate. We therefore introduce the
notion of a macroregion GMi

(1 ≤ i ≤m), which, by definition, contains all
x ∈ GE for which the system is in Mi. The GMi

form a partition of GE (i.e.,
they do not overlap and jointly cover GE). It is the upshot of Boltzmann’s
(1877) combinatorial argument that GMeq

is vastly larger (with respect to mE)
than any other macroregion, a fact known as the dominance of the equilib-
rium macrostate. In fact it is so large that it takes up almost the entire energy
hypersurface.2 The Boltzmann entropy of a macrostate is defined as SBðMiÞ
:5 kBlog ½mðGMi

Þ�, where kB is the Boltzmann constant (1 ≤ i ≤m; e.g., Frigg
and Werndl 2011a). It follows that SBðMpÞ ≪ SB ðMeqÞ. The Boltzmann en-
tropy of a system at time t, SBðtÞ, is the entropy of the system’s macrostate at
time t.

3. The Typicality Argument. One of the core challenges faced by BSM is
to explain why systems, when left to themselves, approach equilibrium and
stay there. Lebowitz (1993a, 1993b), Goldstein (2001), and Goldstein and
Lebowitz (2004) proposed different answers that all rely in one way or an-
other on the notion of typicality. The different arguments are discussed in
Frigg (2009, 2010b), and there is no need to repeat the analysis given there.
In what follows we focus on what emerged from that discussion as the most
promising account, which we call the typicality argument.We provide a con-
cise statement of the account, point out what is missing, and then offer a pro-
posal of how to fill the gaps.

Before doing so, we need to make the somewhat vague notion of a system
approaching equilibrium and staying there more precise. There is a tempta-
tion to base the discussion on a strict notion involving irreversibility and
universality. However, as pointed out in Frigg andWerndl (2011b), this is un-
realistic, and we should regard our mission as accomplished if we can show
that gases exhibit what Lavis (2005, 255) calls thermodynamic-like behavior

2. See Goldstein (2001, 45). We set aside the problem of degeneracy (Lavis 2005, 255–58).
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(TD-like behavior): the entropy of a system that is initially prepared in a low-
entropy state increases until it comes close to its maximum value; it then
stays there and only exhibits frequent small and rare large (downward) fluc-
tuations. So the question is, why is it the case that systems, when left to them-
selves, behave TD-like? Goldstein offers the following answer to this question:
“[GE] consists almost entirely of phase points in the equilibrium macrostate
[GMeq

], with ridiculously few exceptions whose totality has volume of order
1021020

relative to that of [GE]. For a non-equilibrium phase point [x] of
energy E, the Hamiltonian dynamics governing the motion [xðtÞ] would
have to be ridiculously special to avoid reasonably quickly carrying [xðtÞ]
into [GMeq

] and keeping it there for an extremely long time—unless, of
course, [x] itself were ridiculously special” (2001, 43–44).3

A reasonable reconstruction of this passage is that it is an argument in-
volving three typicality claims:

Premise 1: The macrostate structure of the gas is such that equilibrium
states are typical in GE.
Premise 2: The Hamiltonian of the gas is typical in the class of all relevant
Hamiltonians.
Conclusion: Typical initial conditions of the gas lie on solutions exhibit-
ing TD-like behavior.

This is the typicality argument. It presents us with various challenges. For
one, there is the conceptual question of whether we can explain the behavior
of a particular system by appeal to what systems typically do. For another,
there are concerns about the formulation of the above argument: What
notions of typicality are at work in the two premises, and how exactly does
the conclusion follow from them? In what follows, we set the conceptual
worry aside and focus on the argument itself.

Premise 1 alludes to the dominance of the equilibrium state, and the typ-
icality claim rests on a comparison of the Lebesgue measures of sets. So the
notion of typicality involved here is a measure-theoretic one. Here, typi-
cality is a relational property of an element e of a set Σ, which e posses
with respect to Σ, a property P, and a measure n (the typicality measure).
The intuitive idea is that e is typical if and only if (iff ) nearly all members
of Σ have property P and e is one of them. In formal terms, let P be the
subset of Σ consisting of all elements that have property P. Then the el-
ement e is m-typical iff e ∈ P and n Σ ðPÞ :5 nðPÞ=nðΣÞ ≥ 12 d, where 0 ≤
d ≪ 1 is a very small real number. The ‘m’ in front of ‘typical’ indicates that

3. Square brackets indicate that the original notation has been replaced by the notion used
in this article.
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this is a measure-theoretic notion of typicality. Conversely, an element e is
m-atypical iff it belongs to the complement of P. This definition of
typicality underlies the claim made in premise 1 if we make the following
associations: GE isΣ, x is e, being an equilibrium state is P, GMeq

isP, and mE

is n. Then premise 1 is true for gases: it follows from the dominance of the
equilibrium state that there is a small d such that nðGMeq

Þ=nðGEÞ ≥ 12 d.
Hence, equilibrium states are m-typical in GE.

Premise 2 is a restatement in the language of typicality of the claim that the
Hamiltonian of the system is not ‘ridiculously special’. But function spaces,
unlike phase spaces, do not come equipped with normalized measures, and
therefore the above notion of typicality cannot be used tomake this claimpre-
cise. To get around this difficulty, we replace the comparison of measures in
the above definition with the topological notion of comeagre. A set A of a to-
pological space L is called meagre iff it is a countable union of nowhere-
dense sets.4 A set is called comeagre iff its complement is meagre (e.g., Ox-
toby 1980). Loosely speaking, a comeagre set is the topological counterpart
of a set of measure one, and a meagre set corresponds to a set of measure
zero. We can then define a topological notion of typicality as follows. Typ-
icality is a relational property of an element e of a setΣ, which e posses with
respect to a setΣ, a property P and a topology t onΣ. The intuitive idea is
again that e is typical iff most members of Σ have property P and e is one of
them. Formally, let P be the subset of Σ consisting of all elements that
have property P. Then the element e is t-typical iff e ∈ P andP is comeagre
in the topological space L5 ðΣ ; tÞ.5 The ‘t’ indicates that this is a topolog-
ical notion of typicality.6 Conversely, an element e is t-atypical iff it belongs
to the complement of P, which is meagre in L.

This definition of typicality can now be used to analyze premise 2. Unfor-
tunately, things are less straightforward than in the discussion of premise 1.
The problems we are up against become palpable when we try to bring to
bear the abstract definition on specifics of the situation. While it is obvious
that e is a Hamiltonian, it is less clear what the relevant class Σ is. Since
we are focusing on gases, we could say that Σ is the class G of all gas
Hamiltonians. However, from a mathematical point of view this is not
helpful because we do not know how G is circumscribed. We can, of
course, list particular examples (or even families of examples) of gas Ham-
iltonians, but it is not clear whether these examples span G. A further

4. A set B is called nowhere dense iff there is no neighborhood on which B is dense.

5. Comeagre sets are also called generic.

6. For this notion of typicality to make sense, the setΣ has to be large; in particular,Σ
itself cannot be meagre. The cases we consider satisfy this condition.
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problem concerns the choice of an appropriate topology t. Qualifying sets
as meagre and comeagre presupposes a topology t on G, and it is not a
priori clear what topology one ought to choose. Finally, there is the problem
of finding the relevant property P. In order to support the desired conclu-
sion, P has to be a dynamical property that guarantees TD-like behavior.
What is this property?

The aim of this article is to argue that the relevant property P is being
epsilon-ergodic and that the relevant topology t is the Whitney topology.
We go on to argue that the typicality argument holds for an important subset
of G, namely, perturbed Lennard-Jones Hamiltonians. That is,Σ is the class
of perturbed Lennard-Jones Hamiltonians, and P are Hamiltonians of this
class that are epsilon-ergodic. We then suggest that a piecemeal approach in
which one proves typicality claims for perturbations of realistic potentials
(e.g., the Lennard-Jones potential) is all we need because it is empirically
more relevant and avoids unnecessary complications about how to circum-
scribe G.

4. Epsilon-Ergodicity Is Sufficient for Thermodynamic-LikeBehavior. In
this section we argue that being epsilon-ergodic is sufficient for TD-like
behavior. The time average TAðxÞ of a solution originating in x∈GE relative
to the measurable set A is

TAðxÞ5 lim
t→`

1

tE
t

0

xAðftðxÞÞ dt; ð1Þ

where xAðxÞ denotes the characteristic function of A, and the measure on the
time axis is the Lebesgue measure. A system ðGE; mE; ftÞ is ergodic iff for
all measurable sets A and for all x ∈ GE (except, perhaps, for a set B with
mEðBÞ50), we have TAðxÞ5mEðAÞ. A solution is said to be ergodic with re-
spect to a measurable set A iff the proportion of time it spends in A equals the
measure of A.

Now consider B—the set of points that lie on nonergodic solutions with
respect toMeq. It immediately follows that the property of being on an ergo-
dic solution with respect toMeq in GE is m-typical: it is a consequence of the
system being ergodic that mEðBÞ50, and thus mEðGE

jBÞ51. Combining this
result with premise 1 yields that for ergodic systems initial conditions that lie
on TD-like solutions arem-typical. The argument goes as follows. For an ini-
tial condition x∈GMp

on an ergodic solution, the dynamics will carry it to GMeq
,

and then it will stay there most of the time (it will move out of equilibrium
only rarely because the nonequilibrium regions are small compared to GMeq

).
Consequently, the Boltzmann entropy of the system is close to its maximum
most of the time. The set of initial conditions in GMp

that are on ergodic solu-
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tions with respect to Meq is ESp :5GMp
jB. Since mEðB \ GMp

Þ50, trivially
mEðESpÞ=mEðMpÞ51.7

The leading idea of epsilon-ergodicity is to relax the requirement that
mEðBÞ50 and to allow for sets of initial conditions on nonergodic solutions
with respect toMeq that are small but need not be of measure zero: mEðBÞ ≤ ε,
where ε ≥ 0 is a very small real number. For a detailed exposition of epsilon-
ergodicity, we refer the reader toVranas (1998) andFrigg andWerndl (2011b).
It is easy to see, however, that combined with premise 1 epsilon-ergodicity
implies that mEðESpÞ=mEðMpÞ ≥ 12 ε, which is the result we need. That is, for
epsilon-ergodic systems initial conditions that lie on TD-like solutions are
m-typical (we will see below how exactly this result is used to establish the
conclusion of the above argument).8

5. The Whitney Topology. In order to qualify classes of Hamiltonians as
meagre or comeagre, we need a topology (intuitively speaking, a topology
allows us to say how close Hamiltonians are to each other). In what follows,
we restrict attention to smooth Hamiltonians Hðp; qÞ5Tðp; qÞ1 V ðp; qÞ
with a fixed term Tðp; qÞ5p2=2m. So varying the Hamiltonian amounts to
varying the potential energy V ðp; qÞ (e.g., Markus and Meyer 1969, 1974).
For Hamiltonians of that kind it is physically natural to say that two Hamil-
tonians are close when the difference between the potential energy functions
as well as all their derivatives is small. More precisely, consider two Hamil-
tonians H15T1 V1 and H25T1 V2. They are close when jjV1 2V2jj1
jjV ′

1 2V ′
2 jj1 jjV ′′

1 2V ′′
2 jj1 : : : is small, where jj f jj is the integral of j f j

over G. This notion of closeness gives rise to the Whitney topology (with
respect to the potential functions) on the class of smooth Hamiltonians with
phase space G and kinetic energy T (Markus and Meyer 1969, 1974; Hirsch
1976). This topology has a clear physical motivation: T is the standard ki-
netic energy, and saying that two potentials are close if the difference of the
potentials as well as all their derivatives is small is natural if one thinks about
the Taylor expansion of a potential function.

6. The Lennard-Jones Potential. One possible interpretation of the typi-
cality claim involved in premise 2 is that Hamiltonians that are epsilon-

7. It is possible to take the further step and interpret mEð � Þ=mEðGMp
Þ (defined for all mea-

surable subsets of GMp
) as probability. There is then the question about how these prob-

abilities ought to be interpreted (for more on this see Werndl 2009; Frigg 2010a; Frigg
and Hoefer 2010).

8. Ergodicity and epsilon-ergodicity are silent about relaxation times. This is a virtue
because some systems will approach equilibrium quickly and some slowly (Frigg and
Werndl 2011b). Needless to say, in order to be empirically adequate, the specific dy-
namical systems of SM have to show the correct relaxation times, and this has to be
required alongside epsilon-ergodicity.
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ergodic for the energy values relevant to gases are comeagre in the entire
class of gas Hamiltonians G. However, as we have seen above, G is not
clearly circumscribed, and even if it were, the problem is at a level of math-
ematical complexity that makes general proofs look like a remote dream.
Instead, we will defend a more restricted claim as an interpretation of the
typicality claim involved in premise 2. Rather than considering the entire
class of gas Hamiltonians, we focus on a limited yet important subclass of
G and show that in that subclass the desired result holds. The relevant sub-
class L is the class of smooth Hamiltonians that are small perturbations
(in the Whitney topology with respect to the potential function) of a Lennard-
Jones Hamiltonian.We now face two challenges. First, we need to explainwhy
L is an important subclass of G. Second, we have to support the claim that
Hamiltonians that are epsilon-ergodic for the energy values corresponding to
gases are comeagre in L. We first introduce Lennard-Jones Hamiltonians and
then provide arguments for the two claims.

The Lennard-Jones potential for two particles is

UðrÞ5 4a
r

r

� �12
2

r

r

� �6� �
; ð2Þ

where a describes the depth of the potential well, r the distance between the
two particles, and r the distance at which the interparticle potential is 0. The
potential of the entire system is then obtained by summing over all two-
particle interactions.

The Lennard-Jones potential is important because there is good evidence
that the interaction between many real gas molecules is accurately described
by that potential at least to a good degree of approximation. Hence, whatever
potentialsG comprises, many real gases cluster in a subclass ofG, namely, L,
and so knowing how the members of L behave tells us a lot about how real
gases behave.What evidence is there to support this claim? Data about inter-
particle forces suggest that formany real gasmolecules the interaction is well
described by the Lennard-Jones potential (Reichl 1998, 502–5; McQuarrie
2000, 236–37). Furthermore, Lennard-Jones gases have been studied numer-
ically in some detail, and the result is that they provide “a relatively accurate
description of the thermodynamic properties of many real molecules” (Attard
2002, 156). Verlet (1967) extensively studied the thermodynamic properties
such as the compressibility factor of a Lennard-Jones model of an argon gas
for various temperatures and densities.9 All properties agreed well with those
of real argon, prompting Verlet to conclude that there was a striking agree-
ment between the results obtained in numerical studies of argon and the
properties of real argon gas. Hansen and Verlet (1969) compared the phase

9. Intuitively speaking, the compressibility factor characterizes the deviation of a gas from
the behavior of an ideal gas.
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transitions of real argon and the phase transitions predicted by a Lennard-
Jones model of argon and also found good agreement between the two.
Saxena (1957) and Thornton (1960) compared empirical and theoretical val-
ues of the viscosity and thermal conductivity of gases for several temperature
values.10 They found that the Lennard-Jones model realistically describes the
monatomic gases krypton, argon, neon, and helium and the binary mixtures
xenon-krypton and xenon-argon. Finally, Zabaloy, Vasquez, and Macedo
(2006) compared diffusion of real gases where all particles are chemically
identical with the diffusion predicted by a Lennard-Jones model of a gas for
a wide range of temperatures and densities. They found that the Lennard-
Jones model reproduces the behavior of krypton, methane, and carbon diox-
ide gases well.

We now address the second challenge and show that there is evidence that
Hamiltonians that are epsilon-ergodic for the energy values relevant to gases
are typical in L. More precisely, we aim to establish the following proposi-
tion: Hamiltonians for which the resulting dynamical systems ðGE; mE; ftÞ
are epsilon-ergodic (for the energy values corresponding to gases) are typical
in L with respect to the Whitney topology. But why study perturbations?
Why not just study the Lennard-Jones potential itself? The answer is that
experiments cannot establish that gas molecules interact with an exact
Lennard-Jones potential. In fact their real interaction potential might well
differ slightly from the original Lennard-Jones potential—hence the interest
in perturbations. Then, to be able to make claims about real gases, we need to
establish that the relevant property is robust under perturbations. That is,
what we need is that epsilon-ergodic Hamiltonians are typical in the set of
all perturbed Lennard-Jones Hamiltonians.

The evidence in support of this claim is of two kinds. The first kind con-
sists of studies of the unperturbed Lennard-Jones potential. Several numer-
ical investigations of many particle systems whose parts interact with a
Lennard-Jones potential found the motion to be epsilon-ergodic for the en-
ergy values relevant to gases. These studies have a bearing on the above
claim because due to numerical rounding errors during the numerical com-
putation, the system evolves only approximately according to the Lennard-
Jones potential. If small perturbations of Lennard-Jones gases were not
epsilon-ergodic, then one would expect that the motion does not appear to be
epsilon-ergodic in numerical simulations. However, the motion appears to
be epsilon-ergodic, which supports the claim that small perturbations of
Lennard-Jones gases are epsilon-ergodic.

Already inFrigg andWerndl (2011b) evidencewas collected that Lennard-
Jones gases are epsilon-ergodic. In addition to the evidencemention there, let

10. Viscosity is a measure of the resistance of a fluid. Thermal conductivity is the ability of a
material to conduct heat.

DEMYSTIFYING TYPICALITY 925

This content downloaded  on Mon, 17 Dec 2012 07:51:44 AM
All use subject to JSTOR Terms and Conditions



us list some further numerical results that support the claim. Mountain and
Thirumalai’s (1989) numerical experiments on a two-dimensional Lennard-
Jones system (all two-particle interactions were considered) show that the
motion appears to be epsilon-ergodic for the energy values relevant to gases.
Bennetin and Tenenbaum (1983) investigated a two-dimensional Lennard-
Jones gas of identical particles with nearest-neighbor interactions and found
that the motion appears to be epsilon-ergodic. Yoshimura (1997) studied a
one-dimensional chain of particles interacting through a Lennard-Jones po-
tential with nearest-neighbor interactions. He found evidence for epsilon-
ergodicity as well as on average exponential divergence of solutions for the
energy values relevant to gases (a positive value of the largest Lyapunov ex-
ponent; see Robinson 1995, 86).11

It should bementioned that inmost of these studies evidence is found for a
stochastic threshold (e.g., Bocchieri et al. 1970; Bennetin and Tenenbaum
1983;Yoshimura 1997). A stochastic threshold is a value of the energy above
which the motion of the system is epsilon-ergodic; for energy values below
the threshold themotion is not epsilon-ergodic because it is either completely
regular or the energy hypersurface is broken up into a region of regular mo-
tion and a regionwhere the motion appears to be random.12 For our purposes,
it is important to note that the energy values below the energy threshold are
irrelevant. As alreadymentioned in Frigg andWerndl (2011b), many believe
that for very low energy values the classical mechanical description will no
longer adequately describe the relevant physical systems because quantum
effects can no longer be ignored. Even in cases in which the quantum effects
can be ignored, these low energy values do not correspond to gases but to
solids (e.g., Stoddard and Ford 1973).13

The second kind of evidence supporting our claim consists of studies in-
vestigating potentials that are slight variations of the Lennard-Jones poten-
tial and that can therefore be seen as providing insights into the behavior of
perturbed Lennard-Jones potentials. Dellago and Posch (1996) investigated
two-dimensional particles moving under a potential where the long-range

11. With respect to correct relaxation times, Bocchieri et al.’s (1970), Mountain and Thiru-
malai’s (1989), andYoshimura’s (1997) results indicate that Lennard-Jones gases approach
equilibrium very quickly, i.e., in less than 1023 seconds.

12. The phase space volume of the regular region is large and not negligible. As ac-
knowledged in the papers listed in this paragraph, another possibility is that the motion
below the energy threshold is actually epsilon-ergodic but does not appear so because the
approach to equilibrium is extremely slow.

13. This is also one of the main reasons why the Markus-Meyer theorem is no threat to our
claim that small perturbations in the Whitney topology of Lennard-Jones Hamiltonians
are typically epsilon-ergodic for the energy values relevant to gases. All the Markus-Meyer
theorem shows is that epsilon-ergodicity breaks down for very low energy values—but
these values do not correspond to gases (see Frigg and Werndl 2011b).
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part of the Lennard-Jones potential has been replaced by a cubic spine. They
found that the motion appears to be epsilon-ergodic and solutions seem to
diverge exponentially on average (the largest Lyapunov exponent was pos-
itive) for the energy levels corresponding to gases (all two-particle interac-
tions were considered). Donnay (1999) considers two-dimensional general-
ized Lennard-Jones potentials, a broad class of smooth potentials that are
attracting for large r and approach infinity at some point as r goes to zero and
where, additionally, there is a cutoff radius outside which the potential is
zero. He proves that the movement of two particles under such potentials is
not ergodic for some values of the energy. However, he is quick to remark
that for a higher number of particles the system is more likely to be ergodic.
Furthermore, Donnay remarks that even if generalized Lennard-Jones poten-
tials with a higher number of particles should turn out not to be ergodic, they
are likely to be epsilon-ergodic: “Even if one could find such examples [gen-
eralized Lennard-Jones systems with a large number of particles that are
nonergodic], the measure of the set of solutions constrained to lie near the
elliptic periodic orbits is likely to be very small. Thus from a practical point
of view, these systems may appear to be ergodic” (1024). Finally, Stoddard
and Ford (1973) investigated a two-dimensional gas where the Lennard-
Jones potential was slightly modified by introducing a cutoff radius outside
which the potential is zero (all two-particle interactions were considered).
They found evidence for epsilon-ergodicity and for exponential divergence
of nearby solutions (for the system being a C system, see Arnold and Avez
1968).While these numerical studies do not add up to a strict proof, they pro-
vide good reasons to believe that Lennard-Jones potentials and their pertur-
bations are epsilon-ergodic.

7. Completing the Argument. The argument in the last section shows that
the more restricted claim as an interpretation of the typicality claim involved
in premise 2 is strongly supported by numerical evidence.We submit that the
evidence is in fact strong enough to accept this claim. The above typicality
argument can be stated more precisely as follows:

Premise 1: The macrostate structure of the gas is such that equilibrium
states are m-typical in GE.
Premise 2: The Hamiltonian of the gas is t-typical in L.
Conclusion: Typical initial conditions of the gas lie on solutions exhibit-
ing TD-like behavior.

It now remains to be shown that the conclusion indeed follows from the
premises. By now, this is relatively straightforward. By definition, a Hamil-
tonian is t-typical if it is epsilon-ergodic. In such systems the set B of initial
conditions that lie on nonergodic solutions are at most of measure ε. Even
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if all these conditions lie inGMp
, we have mEðBÞ=mEðGMp

Þ ≤ ε=mEðGMp
Þ. Now set

ε=mEðGMp
Þ :5 d. Since ε is very small by assumption, ε=mEðGMp

Þwill be small
too, and initial conditions lying on nonergodic solutions are m-atypical in
GMp

; hence, initial conditions lying on ergodic solutions are m-typical. By
premise 1, the largest part of GE is taken up by equilibrium states Meq, and
therefore an ergodic solution behaves TD-like. Since ergodic solutions
are m-typical in GMp

with respect to mEð � Þ=mEðGMp
Þ, TD-like solutions are

m-typical in GMp
with respect to mEð � Þ=mEðGMp

Þ.
The open question is whether this argument could also be run with G

rather than L and whether such a widening of the scope is desirable at
all. As we have mentioned above, it is entirely unclear how to specify
G. In the absence of such general arguments, one may well want to rethink
one’s wish list. Is it even desirable to prove a more general version of
premise 2? The answer may well be no. As a matter of fact, many relevant
gases are well described by Lennard-Jones potentials, and so for these
systems it is enough to drive the point home for this potential. If another
class of systems requires another potential function, the way forward
would be to prove the equivalent of the typicality claim involved in prem-
ise 2 for that potential function. So the suggestion is that it is sufficient to
prove typicality claims for those potentials that are empirically relevant,
rather than for an entire class of functions, many of which may not have
any physical relevance for the kind of systems under consideration. This
more piecemeal approach has the advantage that it seems empirically
more relevant because it gives us what we need for the specific system
under consideration, and it avoids unnecessary complications about speci-
fying G.
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