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Many policy decisions take input from collections of scientific models. Such decisions
face significant and often poorly understood uncertainty. We rework the so-called confi-
dence approach to tackle decision-making under severe uncertainty with multiple models,
andwe illustrate the approachwith a case study: insurance pricing using hurricanemodels.
The confidence approach has important consequences for this case and offers a powerful
framework for a wide class of problems. We end by discussing different ways in which
model ensembles can feed information into the approach, appropriate to different collec-
tions of models.

1. Introduction. In sciences dealing with complex systems, it is common
to encounter a range of different models representing the same system. Such
models might disagree deeply over the structural relations in the system or in
shallower ways over the values of parameters or initial conditions. Since it is
often impossible to decide between thesemodels using available evidence, sci-
entists work with whole collections—or “ensembles”—of models. Prominent
examples are the CMIP5 ensemble of global climate models and ensembles
of hurricane models for the North Atlantic. In some cases, model ensembles
indicate disagreements among scientists; in other cases, they reflect agreed
latitude in model construction. In either case the ensemble represents (at least
partially) scientific uncertainty about the target system.

How should policymakers usemodel ensembles inmaking decisions, and
how should these decisions reflect the scientific uncertainty associated with
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them? Mainstream decision methods such as expected utility theory assume
that all relevant uncertainty is captured by a single probabilitymeasure and so
do not (without supplementation at least) provide an adequate answer to this
question. Recent decades have seen the development of numerous decision
rules for situations in which decision makers face what is known as “ambi-
guity,”when precise probabilistic estimates of all decision-relevant quantities
are unavailable (for a survey, see Kriegler 2007; Gilboa andMarinacci 2013;
Heal andMilner 2014). There is also a nascent decision-theoretic literature on
model uncertainty (see esp. Marinacci 2015).

This article aims to advance this discussion by reworking a recently devel-
oped decision theory called the confidence approach (Hill 2013; Bradley 2017)
to tackle inputs frommodel ensembles. The aim is to demonstrate its fruitful-
ness; in particular, the benefits of its structured approach tomanaging ensemble
uncertainty. We illustrate the approach by applying it to a scenario involving
hurricane models used for insurance pricing. The lessons from this case are
applicable tomany policy-making scenarios. The framing of our article is cru-
cial: we work from the decision maker’s perspective. They are typically non-
experts. The challenge is to design a normatively appealing decision proce-
dure for their use, which is nevertheless sensitive to the state of the relevant
scientific knowledge.

In section 2we introduce hurricanemodeling and our insurance case study.
Section 3 argues that current practice—using a weighted average of the hur-
ricane models’ outputs—is problematic, and it would be desirable to have an
alternative approach. We introduce such an approach in section 4 and apply it
in a simple form in section 5. Section 6 considers various ways of constructing
the main ingredient in our approach: a nested family of sets of probabilities.
Section 7 concludes with a program for developing the approach.

2. Hurricane Insurance Decision-Making. Our case study is drawn from
a research collaboration with scientists working for a large insurance com-
pany. The insurer is based (and regulated) in the UnitedKingdom but operates
worldwide. As part of its US property insurance, the company offers cover for
damage resulting from hurricanes. This practice relies on estimating the prob-
ability of the insured-against events (i.e., destructive hurricanes) and the dam-
age they cause. It is often not economically efficient for insurers to invest in
the expertise and capabilities required to do this, and so they buy predictive
models from commercial modeling companies. These companies employ
teams of environmental scientists, statisticians, and programmers to construct
simulation models to determine the probability of hurricane “landfalls” along
the US Atlantic coast.1

1. In 2015, the FloridaCommission onHurricaneLoss ProjectionMethodology (FCHLPM)
received submissions for approval to sell models to insurers from four private firms: AIR,
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The modeling firms face a problem: there is significant uncertainty in hur-
ricane modeling, derived in part from disagreements about the underlying
science. The result is that there are multiple models representing the same
system. The FCHLPM (2007) carried out an assessment of the modeling in-
dustry using an ensemble of 972 models (Guin 2010). Risk Management So-
lutions (RMS), a leading modeling firm, uses an ensemble of 13 models to
generate themedium-term rate (MTR), their preferred prediction of hurricane
landfall frequency (Sabbatelli and Waters 2015).

Any company selling models to insurers must decide how to navigate this
landscape. Which model(s) should they build as part of their offering? Offer-
ing more than one model better represents the landscape, but presenting in-
surers with a collection of models creates a further problem for them: How
does one decide when faced with not one model probability but 13 or 972?
The most common solution when working with ensembles is to average the
outputs from each model, and one task of this article is to lay bare the limita-
tions of this process. To add specificity to the problem, and show how it arises
in an important real-world application, we now give a brief overview of the
RMS model ensemble. We chose RMS because they are a leading hurricane
modeling firm and because they are open about their use of an ensemble of
models.

A catastrophe model for insurance works in four stages, covering (1) the
hazard, in this case a hurricane; (2) the physical damage it creates, which re-
quiresmodeling the vulnerability of buildings and infrastructure to wind, wa-
ter, and so on; (3) calculating insurer exposure, by looking at insurance policy
terms; and (4) financial modeling of the insured losses that result. We will
consider only the first component. Shome et al. (2018, 37) provide a classi-
fication of RMS hurricane models for the North Atlantic, with model names
reflecting the sometimes competing choices made in the modeling process.
Briefly reviewing these types effectively conveys the diversity of the models
in this ensemble.2

• “Direct”models use historic hurricane landfall counts as input andmake
a landfall prediction.

• “Indirect” models use storm formation data from the Atlantic basin to
make a prediction of hurricane activity in the basin and then convert that

Applied Research Associates, CoreLogic, and Risk Management Solutions (FCHLPM
2015). Insurers are really interested in losses from destructive hurricanes, and so the math-
ematical object of interest is (a function of) the probability of losses above a certain value.
We focus on probabilities of the underlying events for simplicity.

2. As the RMS ensemble is proprietary, some detective work is required here. We com-
pared Jewson et al. (2009), Sabbatelli and Waters (2015), Sabbatelli (2017), and Shome
et al. (2018).
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prediction into a landfall prediction using the estimated proportion of
basin storms that finally make landfall along the US coastline (Jewson
et al. 2009, 12).

• “Indo-Pacific” models include the impact of sea surface temperatures
(SSTs) in the Indian and Pacific oceans on hurricane formation through
their effect on wind shear in the Atlantic basin.

• “Shift” models identify periods of higher or lower than average hur-
ricane activity or SSTs in the historic data. This is due to the Atlantic
multidecadal oscillation (AMO), and probabilities of transitions from
high- to low-activity periods are estimated using historic data on tree
ring sizes, a method due to Enfield and Cid-Serrano (2006) (Jewson
et al. 2009, 14).

• “Active baseline” models, a category mutually exclusive with “shift,”
reflect an alternate hypothesis on the AMO: the low-activity period in
the 1970s and 1980swas due to SSTcooling induced by high atmospheric
aerosol content, primarily volcanic aerosol (Booth et al. 2012). If cor-
rect, SSTs will not revert to a cool phase in the future, and one should
not apply a probability of shifting back to a low-activity hurricane gen-
eration phase. These “active baseline” models therefore do not include
the Enfield and Cid-Serrano probabilities in their forecasts and subse-
quently forecast higher landfall rates than the shift models (Sabbatelli
2017).

The ensemble is built up by taking combinations of the above methods.
It starts with two models: direct and indirect. By adding models with Indo-
Pacific SSTs, we get to four. We then add shift and active baseline variants
of all four—leading to 12 models. The thirteenth is a long-term rate (LTR)
model, included for comparison. RMS’s LTR is a statistical model based on
historical landfall and basin storm data, and it models hurricane frequency
as constant in time (Shome et al. 2018, 33). RMS’s certification as a modeler
for the American market (by the FCHLPM) is granted on the basis of their
LTR model, and so, although RMS advertises the MTR ensemble average
as providing their state-of-the-art view of hurricane risk, the LTR is often used
as a reference view.

This list shows that the models included in the ensemble are not merely
variants of the samemodel (obtained, possibly, by varying parameter values).
The models fall into groups that are genuinely different and in some cases
mutually incompatible. How should an insurance company use this ensemble
to determine the price of its policies?

3. Averaging and Its Limitations. The problem that scientists face is how
to extract the information contained in the ensemble and make it available
to users. This is a thorny issue because it is far from clear how to interpret
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the (often conflicting) outputs from different models. A popular method is
to calculate a weighted average of all model outputs and use this average
for decision-making (Clemen [1989] and Armstrong [2001] provide reviews
from economics andmanagement).3 This has the advantage of allowing stan-
dard decision methods, which require a single probability as an input, to be
applied.

Averaging works in some cases, and where it works one should use it.
However, it does not work in all cases, and hurricane insurance is such a case
(Philp et al. 2019). The most significant problem from our perspective is that
such decision methods discard useful information about the state of scientific
uncertainty. AsMorgan (2014) points out, averaging focuses attention on the
mean projection only. However, the spread of results is itself important infor-
mation. First, whenwe are interested in extreme events likemajor hurricanes,
then we are explicitly concerned with the shape of the distribution and not
just the mean. Second, the spread tells us something about the state of our
knowledge about a question. To the degree that there is spread, it reflects sci-
entific uncertainty about the system and our lack of precision in modeling its
relevant features. This by itself is valuable information that the decision
maker might want to use.

Although averaging does not preclude communication of the spread, in
the expected utility paradigm it is unclear how this information is to be used,
since the expected utility of an action or policy depends only on the decision
maker’s probability for relevant contingencies (in addition of course to the
utility of outcomes). Evidently the same probability can be obtained by av-
eraging over very different sets of candidate probability functions. Conse-
quently, expected utility maximization precludes making decisions in a way
that is sensitive to the state of scientific understanding as expressed by the
spread in the ensemble projections. But in decisions with high stakes it is rea-
sonable to seek to calibrate one’s choices to the level of uncertainty contained
in the scientific projections that one is drawing on (see Bradley 2017; Hill
2019). The procedure we develop in sections 4 and 5 overcomes this limita-
tion by making structured use of ensemble spread.

Additional problems undermine decision-maker confidence in averaging
procedures. Weights for averaging are typically constructed by scoring mod-
els on skill. This often involves hindcasting: reproducing a piece of the his-
torical record (which the model has not “seen” before). This method faces
the problem that the historical data set used to score these models is small,

3. RMS aggregates the outputs from the 13 models in its ensemble; Sabbatelli (2017)
confirms this is a weighted average. In a recent interview RMS stated that the predictive
test used for scoring involves predicting hurricane activity in every sequential 5-year pe-
riod over the past 50 years (Insurance ERM 2018). The scoring rule (SR) used is not
discussed, however, and this information does not appear to be in the public domain.
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as large hurricanes are infrequent. HURDAT2, the standard database for hur-
ricanes hitting theAtlantic coast of theUnited States, ismoderate in size, with
∼300 storms to date and only one-third of those counting as “major hurri-
canes.” If we split the data set by region the numbers drop precipitously.4

As Shome et al. (2018) point out, actuaries judge that there are insufficient
data to form a reliable statistical model to predict future events. The data are
also insufficient to meet regulatory requirements. The national regulator in
the United Kingdom requires insurance companies to design their portfolio
in a way that they go bust at most once in 200 years. Even on a generous read-
ing there are atmost 120 years of usable hurricane frequency data. But 120 years
of data do not provide a reliable understanding of the tail events and the shape
of the distribution at those longer return periods. Shome et al. (2018) cite
this paucity of data as a reason for using quasi-physical simulation models,
whereby modelers create “statistical storms” to expand and “fill in” the data
set. This process, however, relies on the (scant) historical evidence, and so it
cannot remove the problem of restricted evidence.

A further problem concerns the choice of a scoring rule (SR).5 The problem
is that the weights are set by the rule, and so the average value is sensitive to this
choice. But the range of SRs on offer is so diverse that almost any reasonable
answer could be selected by one of them (Stainforth, Allen, et al. 2007, 2155).
TheAustralianBureau ofMeteorologymaintains awebsite onprobabilistic fore-
cast verification techniques, which covers more than 50 SRs, visualization
techniques, and analytical approaches to measure the success of probabilistic
forecasts. The categories are nonexclusive, and for a given problem there may
be multiple appropriate rules with different features (Australian Bureau of
Meteorology 2017).6 So, experts often disagree over which rules to usewhen,
and individual experts may endorse more than one rule as appropriate for
a given situation. The debate over these rules covers both technical matters
(e.g., which is better suited to rare event predictions) and values (about what
counts as a “good” prediction). Decision makers ought ideally to select a rule
embodying their values (i.e., that corresponds to what they regard as impor-
tant), and yet the technical complexity of the subject means that decision

4. The full database is at http://www.aoml.noaa.gov/hrd/hurdat/All_U.S._Hurricanes
.html.

5. There is also a debate over the suitability of linear averaging as opposed to, e.g., geo-
metric averaging (Dietrich and List 2016). As we advocate for a different method entirely,
we do not discuss this debate.

6. The problem equally arises in the context of hurricane modeling. Skill scores are
among the fiercely protected trade secrets of modeling companies and insurers, and they
are therefore not in the public domain. However, we know in fact that different actors in
the market use different skill scores and that these can support different results (nondis-
closure agreements prohibit us from saying more about this).
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makers are often not in a position to participate meaningfully in a choice of
rule. Crucially, the problem of choosing a SR is very similar to the original
problem of choosing/formulating an answer from the range present in the
model ensemble. Anymethod of choosing a SR requires deciding between dis-
agreeing experts, and so we may well ask why we do not simply apply these
same considerations to the “first-order” problem of model disagreement.7

We conclude that averages are a reliable guide to action only when uncer-
tainty is small (and known to be so), enough data are available formeaningful
scoring, and different SRs produce similar results. There may be situations
that satisfy these requirements, but hurricane modeling is not one of them.
Averaging is therefore not an optimal procedure to make decisions on hurri-
cane insurance. Practitioners feel similarly: insurers have expressed some of
these concerns to us, and in practice they will “factor in” their dissatisfaction
by, for example, multiplying the average event probabilities by some a > 1.
They have, however, no principled way of determining the value of a, which
is typically set in an ad hoc manner by managers removed from the detail of
themodeling. The nature of these problems is such that they are unlikely to be
resolved by tweaks to the aggregation methodology; a completely new ap-
proach is needed.

4. The Confidence Approach. In this section we outline the theoretical
basis for our alternate approach to using results from the model ensemble, and
in the next we apply this approach to a simple insurance problem. This work
applies a relatively new theory of decision-making under ambiguity, which
we call the confidence approach, developed by Brian Hill (2013, 2016).

The confidence approach makes use of “imprecise probabilities,” sets of
probability functions that generate sets of values (typically, intervals) for each
event, as a way of capturing features of agents’ uncertainty—specifically the
empirical ambiguity (Bradley [2019] presents an overview). Imprecise prob-
abilities support decision rules that take such sets as inputs, as opposed to the
single probability function required by the classical decision theory of Sav-
age. There are many such rules on offer, but they all face similar challenges.

First, how does one determine the relevant set of probability functions or,
equivalently, the extent of the uncertainty the decision maker faces? The
question has significant implications for applications of these decision rules.
When the set is large, many of them lead to levels of caution that could be
regarded as excessive (e.g., such that much of today’s hurricane insurance

7. Some might protest: there is a best SR—the Brier score—and all should use it (e.g.,
Leitgeb and Pettigrew 2010). But the Brier score’s purpose is to select the best predic-
tion; it is nearly useless for relative comparisons of low-probability predictions. Brier
compares predictions to the “truth,” e.g., 1 if it occurs. The differences between predic-
tions of very improbable events will be lost when they are subtracted from 1.
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business would not be written). But when it is small, it may not capture all
uncertainty relevant to the decision maker. Despite this, imprecise decision
theories often fail to separate the uncertainty agents face from their attitude
to it, for instance, by taking the set of probabilities representing the agent’s
uncertainty to be the one with respect to which they maximize the quantity
that the decision theory in question takes to be significant, for example, min-
imum expected utility (Gilboa and Marinacci 2013; Hill 2019).

Second, these theories, like expected utility theory, do not allow for the
differing importance of various decisions to affect how a decision maker re-
sponds to uncertainty (Hill 2013), in part because of the aforementioned fail-
ure to separate the uncertainty from the response to it. But intuitively, how
much it matters that we lack scientific certainty on some question, and how
cautious we want to be in making choices as a result, should depend on how
much is at stake for us in these choices. The confidence approach mitigates
against these concerns, while drawing on the benefits of using imprecise
probabilities.

We start with a high-level description of the approach, using a trivial but
intuitive example; along the way, we note how policy decisions will differ.
Here is the trivial case: suppose you are deciding whether to place a bet on
your favorite contestant, Baga Chipz, winning a drag competition. To bet you
pay £50 up front. If she wins you are paid back your £50 and receive another
£50; if she does not win you lose your £50. So, this bet has a positive expected
monetary return whenever the probability of her winning is strictly greater
than 0.5.Wewill show how the confidence approach determines whether this
is a fair or advantageous bet.

First, we represent your beliefs with a family of nested sets of probabili-
ties. Each set represents a claim that you accept about the relevant probability,
while the nesting captures the logical relationship between these claims. In
our example, these claims could range from the very imprecise (indeed triv-
ial) claim that “the probability of Baga Chipz winning is between 0 and 1” to
the very precise “the probability of Baga Chipz winning is 0.42.” Figure 1b
shows such a nested family schematically.

Next, we consider your confidence in each of these claims. Confidence
should reflect the “weight of evidence” supporting a claim—a term, coined
by Peirce (1878) and popularized by Keynes (1921, 78), describing the prop-
erty of evidence that makes us more sure of our probabilistic judgment, even
when the judgment itself may remain constant. “Confidence” is thus a
(second-order) attitude toward a (first-order) claim, reflecting an evaluation
of the state of knowledge underpinning it. It has the following logical struc-
ture: one cannot be more confident in more precise claims. So, you cannot be
more confident that the probability of Baga’s win is 0.42 than you are that it is
in the interval [0.3, 0.5]. This is a simple consequence of the former’s inclu-
sion in the latter.
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In principle we could have any number of sets in the nested family. For
practical purposes, it is useful to coarse grain down to “levels of confidence”
(e.g., low, medium, high). This involves making a judgment about which
members of the family of nested sets are equivalent in terms of coarse-grained
confidence and grouping these together as in figure 1c. The idea is that there
is no decision-relevant difference between the grouped sets. As narrower sets
excludemore possibilities, we therefore have a pragmatic motivation to work
with only the most precise interval in each level—in figure 1c this corre-
sponds to the bottom interval in each level. In our example, this means re-
stricting your consideration to three probability intervals, say 0.42, [0.3,
0.5], and [0.2, 0.6] reflecting claims you endorse with low, medium, and high
confidence.8 Every claim wider than 0.42 but narrower than [0.3, 0.5] is con-
sidered confidence equivalent to 0.42 (i.e., low confidence), and so forth. Put
another way: if you saw decision-relevant differences between the interme-
diate intervals, you would further fine grain.

How we coarse grain will partly be a matter of convention, but it is moti-
vated by an important consideration: connecting the relative ranking of a par-
ticular decision’s family of sets to a background standard of confidence. An
ordinal ranking cannot say anything about how much confidence we have in
any claim; it can only tell us how that claim is related to other claims. If the
outcome of my bet is that I will be shot if I lose, I want to be very confident
about my probability estimate; “very” reflecting the absolute importance of
the decision and not just that I want more confidence in it than other estimates
of drag queen odds. A decision maker can do this by developing a sense of

8. As a matter of logic, the full [0, 1] interval is always in the highest confidence level.
This could be the high level above or an implicit “highest” level.

Figure 1. Confidence approach: a, set of point estimates of probability; b, nested
family of sets; c, confidence levels; d, stakes and cautiousness select a level. Color
version available as an online enhancement.
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what counts as “enough evidence to warrant high confidence” and apply-
ing that standard across decision problems through the labels applied in this
coarse-graining step. If there is poor evidence supporting all claims in the
family, perhaps the top coarse-grained level should only be considered “me-
dium confidence.”

Coarse graining to levels pegged to such a background standard of evi-
dence allows our notion of “confidence” to decouple from the situation-
specific information in front of the agent. This allows us to make decisions
in a way that reflects their importance, relative to other decisions we make.
To accomplish this systematically, the confidence approach adds two more
features to standard decision theory.

The first is the “stakes” of the decision: the agent’s assessment of how im-
portant it is. The key feature of stakes is that it partially orders decisions (i.e.,
that we can compare two decisions and rank them in terms of importance).
How this is done can vary, but for formal simplicity, we think of stakes as
a number on a 0–1 scale.9 The term “stakes” is chosen to imply that it should
be a feature of the potential outcomes, as in our betting example where you
stand to lose (or win) £50. There is a wide range of potential functions of these
outcomes that could measure your stakes; Hill (2016) discusses their differ-
ences. For simplicity let us take the stakes to be a function purely of the worst
possible outcome—losing £50. Assessing the relative importance of a deci-
sion in which you stand to lose £50 involves reflecting on other decisions you
make, the value of £50 to you, and so forth. For the moment let us simply as-
sume you regard this as a moderately important decision and assign s 5 0:5.

Second, agents have as a feature of their psychology a function called
“cautiousness,” which determines how much confidence they require to de-
cide, given the stakes. Cautiousness thus takes the stakes as input and outputs
the coarse-grained level of confidence required to make the decision; fig-
ure 1d illustrates, with cautiousness denotedD. A different degree of caution,
colloquially speaking, is represented by a different cautiousness function.
“More cautiousness” means that more of the 0–1 stakes range is mapped to
a high confidence level. In our simple example, the question to ask is, “How
much confidence do you need in order to make moderately important deci-
sions, with stakes around 0.5?”

Cautiousness represents an attitude to ambiguity on the part of the decision
maker. It is therefore subjective and will need to be elicited.10 Let us suppose

9. If one is happy to think that agents have outcomes they consider least (most) impor-
tant, then 0 (1) represents this. If one is concerned that stakes should be unbounded, then
suppose that this infinite scale has been transformed to 0–1, with (0) 1 representing (neg-
ative) positive infinity.

10. Theorem 2 in Hill (2013) proves that the cautiousness function is equivalent to mea-
sures of ambiguity aversion in decision theories that strictly separate beliefs and desires,
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that after such an elicitationwe determine that you requiremedium confidence
for decisions of moderate importance—so that, for you, D(0:5) 5 medium.
You can now select a probability interval: the narrowest interval in the level
of confidence that your cautiousness demands, given the stakes of the deci-
sion. In the case of your drag queen bet, that interval is [0.3, 0.5].

In a policy-making context, wemaywish to domore than elicit the attitude
of the individual decision maker and look to public and political debate to
settle what level is appropriate. In our insurance setting, it will be natural
for this to represent the firm’s ambiguity attitude, a policy on the conditions
under which it is allowable to sell insurance.

We now reconnect with imprecise decision theory. The probability inter-
val selected by the confidence procedure can be used with any imprecise de-
cision rule. For the sake of specificity, wewill illustrate with one popular rule:
maxmin expected utility (MMEU). This rule says that act f is preferred to act
g if and only if the minimum expected utility of f, with respect to the set of
probability functions, is greater than the minimum expected utility of g with
respect to the same set (Gilboa and Schmeidler 1989). That is, it recommends
choosing cautiously, by acting to guarantee the best outcome if things turn
out to be the worst way they could be, from your perspective.

One benefit of the confidence approach is that we have two “levers” of am-
biguity attitude: the cautiousness function and the decision rule. Although
MMEU is highly ambiguity averse, this aversion can be attenuated by the
choice of cautiousness function—specifically, by choosing a function that
recommends moderate levels of confidence for a wide range of stakes. (The
opposite choice could boost MMEU’s ambiguity aversion.) Decision makers
who are not completely ambiguity averse can thus still use MMEU, for in-
stance, because it is a very simple rule to implement.We adopt it for precisely
this reason.

Applying MMEU leads to bad news for your bet on Baga Chipz. Things
turn out worst if the probability is at the low end of your medium-confidence
interval, where you expect to losemoney on this bet because the probability is
below the priced value of 0.5. You therefore should not place the bet. In a sin-
gle simple decision like this, the confidence approachmay seem at once com-
plex and permissive. In the next section, this heavy machinery will show its
value.

5. Confidence, Models, and Insurance. We now apply the confidence
approach to our case: making an insurance pricing decision, using input from
an ensemble of scientific models. Our example simplifies some details of
actual insurance pricing by considering a very simple portfolio with only one

such as the “smooth ambiguity” model of Klibanoff, Marinacci, and Mukerji (2005).
Cautiousness can therefore be elicited using methods apt to such theories.
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contract. This does not influence the philosophical points we wish to make
about the treatment of outputs from a model ensemble, and the approach
can be applied to more complex portfolios.

5.1. A Simplified Insurance Problem. Assume that an insurer wants to
sell a single insurance contract on house damage due to hurricanes. It has
no current contracts and plans to sell just this one, which insures against event
E: “a hurricane strikes Fort Lauderdale in 2021.” The contract is for a total
value v 5 100,000, and to simplify we will assume it is a simple binary con-
tract, paying out either $0 if the event does not occur or $100,000 if it does.

The insurer plans to price this contract in the tradition of Stone’s (1973)
constraint equation: p > yH 2 d. The equation determines the minimum
premium (annual price)p required to make a profit. Premiumpmust be larger
than the difference between the annual cost of held capital, yH, and the (neg-
ative) expected damages, ⟨d⟩, where “damages” refers to the amount the in-
surer pays to its customers, which is represented by a damage function d. The
insurer’s probability for E is p(E), which determines ⟨d⟩ (and, in a compli-
cated process we will not discuss here, H). We will assume that the insurer’s
capital holdings must be equal to the contract value (H 5 v). If it then turns
out that, say, p(E ) 5 0:01 and the cost of capital is 5% (y 5 0:05), Stone’s
equation says that theminimum premium is $6,000. The value of y is dictated
by capital markets; the insurer’s problem is to determine p(E), given the re-
sults of the model ensemble.

5.2. The Scientific Input and Aggregation. Consider a simplified sce-
nario that captures the salient features of the RMS ensemble from section 3.
Our scientific modelers construct 10 models, m1, ... , m10, which encode dif-
ferent views about, for example, howhurricanesmove across theAtlantic and
how the factors influencing their generation will turn out in 2021. As the de-
tails will not matter here, we will not describe how these models work except
that they generate p(E) and that one of them—m8—was built for a different
region but works for Florida. Table 1 shows 10 numbers that we will use as
our model outputs. The “standard” approach would be to score these models
on their predictive skill, as described in section 3. Suppose that we have done
this, using a popular SR R. The normalized scores and outputs for p(E) are
shown in table 1. Using these normalized scores, we can calculate the en-
semble average: pA(E ) 5 0:0072. This is what is standardly used for

TABLE 1. MODEL OUTPUTS FOR TOY EXAMPLE

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

p(E) .0070 .0071 .0068 .0074 .0076 .0061 .0083 .0086 .0091 .0092
Weight (%) 23.7 20.7 15.8 11.6 11.5 7.3 3.2 3.0 1.7 1.6
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decision-making, especially in cases in which it has higher “skill,” according
to rule R, than even the best model.

Let us consider how the standard approach would price the contract.
Using pA(E ), the expected damage is ⟨d ⟩A 5 pA(E )d(E ) 5 0:0072�
2100,000 5 2720. The required holdings are H 5 100,000. If we take
the cost of capital to be y 5 0:05, then we have minimum price pA > yH 2
⟨d ⟩A 5 5,720.

As we noted above, skeptical underwriters often introduce an inflation-
ary factor for safety. This may take the form of crudely doubling the aggregate
probability pA(E). Going through the calculations with that probability, we get
the “safety” pricepS > 6,440, which ismuch higher than the “technical” price
pA. This is clearly ad hoc, but decisionmakers reportedmaking suchmoves to
us, in the absence of a structured method for dealing with ambiguity.

5.3. Pricing with Confidence. To apply the confidence approach we
must formulate claims about p(E). Here is a simple method of doing so;
we discuss more elaborate alternatives in the next section. We will assume
that SR R has reliably identified the best model, m1, and build intervals
around it. Our “lowest,”most specific claim is that p(E ) 5 0:007. We form
wider intervals by including predictions in order: I1 5 0:007, I2 5 ½0:007,
0:0071�, ... , I10 5 ½0:0061, 0:0092�.

We now coarse grain and form levels. As our insurer has made no deci-
sions of this sort before, it does not have an ongoing assessment of evidential
quality and so constructs the confidence levels using only the model outputs.
For simplicity we can suppose that these 10 models represent all the major
relevant scientific views. As a first pass, the insurer could decide to coarse
grain by model support: using up to 4 models will yield low confidence,
5–7 medium, and 8–10 high. However, in consultation with the modelers
the insurer notes that this would result in the narrowest interval in the high
level being I8. But themodelers doubtm8, as it was built for a different region.
This is a scientific reason to avoid having a decision depend on it, and so the
insurer revises the coarse graining so that low involves models 1–4; medium,
5–8; and high, 9 and 10:11

L 5 0:007, 0:007, 0:0071½ �, 0:0068, 0:0071½ �, 0:0068, 0:0074½ �f g
M5 0:0068, 0:0076½ �, 0:0061, 0:0076½ �, 0:0061, 0:0083½ �, 0:0061, 0:0086½ �f g

H 5 0:0061, 0:0091½ �, 0:0061, 0:0092½ �f g:

11. This is a simplified example of how scientific facts about the models can inform con-
fidence level formation. A further move of this sort might be to look at the evidence used
in the construction of each model: different evidential bases (perhaps because of the sci-
entific disagreements generating the ensemble) can generate different incremental gains
in confidence. For the moment we will neglect such considerations.
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The agent now regards the intervals within each level as being of equivalent
confidence and so will make decisions using the narrowest interval available
at a level. Figures 1a–1c illustrate the process just described.

How can we characterize the stakes facing this insurer? This contract will
constitute its whole business, and so the risk of ruin is high. Still, no one’s life
is at stake, and there is no impact on anything outside of the realm of this de-
cision (no other business thatmight be taken down). So, the insurer concludes
that its stakes are moderately high, s 5 0:75. Next, we describe the insurer’s
ambiguity attitude (which corresponds to cautiousness). As insurance of nat-
ural catastrophes involves significant ambiguity, it seems reasonable to as-
sume that this insurer is not overly ambiguity averse. Here is one cautious-
ness function that exhibits only moderate ambiguity aversion: stakes below
0.6 require low confidence, 0.6–0.9 require medium, and above 0.9, high.
Applying this to the example outlined above, we see that the decision maker
resolves to use level M and its narrowest interval I5 5 ½0:0068, 0:0076�.

We can now apply our chosen decision rule. In insurance, higher probabil-
ities represent worse payoffs for the insurer, and so MMEU selects the high-
est probability in the range: pC(E) 5 0:0076. We therefore have the follow-
ing expected damages ⟨d ⟩C 5 0:0076 � 2100,000 5 2760. The holdings
are exactly as before. We therefore get pC > yH 2 ⟨d ⟩C 5 5,760.

So, the confidence model recommends pricing the same contract (at least)
0.7% higher than the averaging approach. Crucially, pC is 10.5% below the
“safety” price pS. This is a very large difference when pricing large insurance
contracts—representing money lost to undue, and unjustified, caution. The
difference between pC and pA, although smaller, is still significant, but note
also that its size is an artifact of our toy example: selling only one contract
imposes exceedingly high capital costs. If we sold 20, and spread the capital
cost evenly among them so that h 5 H=20, the prices would be

pA
20 > yh 2 ⟨d ⟩A 5 $970, pS

20 > $1,690, pC
20 > $1,010,

inwhich case the confidence price is 4.1%higher than the aggregate price and
40% below the “safety” price. Our structured approach to uncertainty classi-
fies a number of sales as imprudent that would go ahead under the aggregate
price but far fewer than are excluded by the ad hoc safety price. This shows
that “rule of thumb” uncertainty management (i.e., making ad hoc adjust-
ments to the average probability) is not only baseless; it is not cost effective.
Note also that the stakes and cautiousness functions, while subjective, are sta-
ble attitudes of the decision maker that persist across decisions. The confi-
dence approach therefore ensures consistency across sets of decisions in a
manner that ad hoc uncertainty management cannot.

Let us pause here to consider a potential objection: while the ad hoc safety
price is obviously unjustified, in cases inwhich the average has greater “skill”
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than the best model, the decision maker should simply rely on the average. In
reply we say: decision-making using the average is overly reliant on the scor-
ing process, which we noted in section 3 suffers from a paucity of data and a
degree of arbitrariness in the choice of a SR. The confidence approach miti-
gates these worries by introducing a flexible degree of robustness. As we dis-
cuss below, there are different ways onemight construct the nested sets, and it
may well be reasonable to center them on an average. But the key to the con-
fidence approach is that, as the stakes increase, one uses wider intervals
around the center, thereby guarding against concerns about how that center
was identified. So even when the average has greater “skill” than even the
best individual model, one should prefer the confidence approach to using
simply the average.

6. Methods for Constructing Nested Sets. The simple implementation of
the confidence approach tomodel outputs described above is by nomeans the
only option. Our view is that there is no “one size fits all”method for the con-
struction of nested sets, given the diversity of target systems and modeling
endeavors. Instead the set-construction method will depend on the specifics
of the ensemble. In this section we make a start on a “toolbox” for model-
based decisions: outlining several potential set-construction methods and
identifying what each requires of the ensemble and when it is likely to per-
form well.

In section 5 we constructed our intervals by starting with the best model,
m1, and including the next best (according to rule R) each time. But we could
also describe what we did as starting with m1 and including the next closest
model each time, with respect to the Euclidean distance between outputs. In
the toy example these procedures generate the same result, and we did not
specifywhichwewere following at the time. But in general, wemay not have
a reliable rule (sec. 3), and these two orderings may diverge. We now outline
a decision tree for how to construct a nested hierarchy in the general case.

The first question is: Can you identify a model output or outputs to act as a
center for the nesting? (We consider different ways you might successfully
accomplish this in sec. 6.1) If yes, then: Do you also have a reliable ordering
ofmodel outputs? If yes, thenwe recommend forming the nesting in linewith
this ordering (sec. 6.1.1). But note that in section 3 we outlined various
problems with scoring models in the hurricane case—at this point in the de-
cision tree, our case likely yields a no. In this case, we recommend forming
the nesting by including models in distance order (sec. 6.1.2).

If you cannot identify a center model (sec. 6.2), then we ask: Can you de-
fend the use of one of a suite of statistical methods that construct a center (and
a nesting to go with it)? In section 6.2.1 we consider centering around the
average using either a partial ordering or distance, and in section 6.2.2we dis-
cuss a method that uses central intervals of a Gaussian distribution to define
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confidence levels. If you cannot do either of these, then you are in our worst-
case scenario and must use only the widest envelope of your model outputs
(sec. 6.2.3).

6.1. Cases with an Identified Center Model. Let us consider cases in
which we can identify one model as best, and so we use it as the center. First,
this identificationmight use a skill score ormultiple scores. Recall that in sec-
tion 3 we presented a number of limitations of using the weighted average of
the hurricane ensemble outputs, two of which also speak against the use of a
SR to rank models: (1) there are many such rules and choosing between them
is a complexmatter over which experts disagree, and (2) theremay be limited
data for testing, in which case the scores may be unreliable.

In the simplest case when neither of these problems is salient, wewill have
a single SR that makes use of sufficient data to identify one model as best. If
so, we use it to form the center. Note that we need not always center on a point
output. In situations in which we are uncertain, it may be natural to have the
most precise claim we are willing to accept be interval valued: an uncertainty
range around the best output, reflecting the uncertainty in even our best
model.More complex caseswill involvemultiple plausible SRs. If they agree
on the best model, we not only have a starting point for the hierarchy but can
regard it as having a degree of robustness. If the rules disagree, we are in a
difficult situation in which there are multiple best models (Betz 2009). In
such a situation we can still follow the robustness thought and form a central
interval from the best model identified by each SR. Finally, we may have a
method of identifying a center that does not rely on a skill score, for example,
if experts tell us one model is best without providing a performance-based
rationale. (The same considerations discussed for SRs apply.)

Given that we have a center, we now need to form the nesting. Here the nat-
ural question is: Can we form a reliable partial ordering of models, reflecting
their strength? We consider first the positive answer case, then the negative.

6.1.1. Nesting Using a Partial Ordering. As one of the main ways of
identifying a center is using a skill score, we will first consider the case in
which we trust a rule (or rules) to partially order the models. As with the cen-
ter, good cases using a SR order are those in which there is a natural rule and
plenty of data. Here the rule’s ordering gives evidence of model strength, and
we can follow it as in the toy example. If there is more than one SR on the
table, we can attempt to form a SR order by consulting each of them. In the
best case, they agree, andwe use the resulting order.12 This would confer some

12. We only ever use the ordering provided by a rule. When there are multiple rules,
agreement means ordinal rather than cardinal agreement. We are therefore always in a
better position than averaging with respect to sec. 3.
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robustness on the ordering and the resulting hierarchy. If they disagree, we are
back in a difficult case. Following the thinking above, we might try to form
the interval about the center by including all the second-best model outputs,
and so on.13 This is a rather cautious approach, and relatively small differences
between the rules could lead to a very coarse-grained hierarchy.

A less cautious approach is to break the tie between, for example, two
models each ranked second by some SR, using the distance of each output
from the last interval in the nesting. This produces a finer-grained hierarchy,
whichmay be helpful when the SR order is too coarse to allow for the desired
number of confidence levels.

6.1.2. Nesting Using Distance. If we have no reliable ordering informa-
tion about models, other than the identified center, then we can use the dis-
tance of models from the center to form a naive ordering. A hierarchy built on
this ordering will respect the logic of confidence and will produce relatively
fine-grained hierarchies (unless many model outputs happen to be equally
spaced), which can then be coarse grained to form confidence levels. This
method is conservative, in that it uses only model outputs to form the hierar-
chy, unlike methods discussed below.

The problemwith it is that distance ordering need not track any facts about
model strength.When we use a SR order, we know something about the con-
fidence gains resulting from moving to a wider interval: each step up in the
hierarchy delivers weakly less incremental confidence than the previous step.
Using a distance ordering does not ensure this, and so the resulting hierarchy
is less informative. This makes sense in our more uncertain case, but it is why
we do not endorse distance ordering when there is a defensible SR order
available.

6.2. Cases without an Identified Center Model. We now consider cases
in which we cannot identify any center. Here the only facts available to a de-
cision maker are the model outputs themselves; we are in a case of more se-
vere uncertainty and can use only distributional properties of the ensemble to
generate our hierarchy.

6.2.1. Nesting around the Average. It is conceivable that there are cases
in which the model average has more skill than any individual model accord-
ing to the SR being used. In such a scenario one can use the methods dis-
cussed in section 6.1 and nest the models around the mean using either a par-
tial ordering or a distance.

13. Nothing in our method requires us to consider a sequence of points when construct-
ing intervals. If the models generate interval-valued outputs, we can conduct the confi-
dence procedure using any of the options outlined in this decision tree.
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6.2.2. Nesting Using Statistical Methods. In cases in which there is nei-
ther a center model nor a meaningful partial ordering or distance, one may
nevertheless construct a nesting using statistical methods. The thought here
is that the ensemble contains useful information about the phenomenon of
interest, at the level of individual model outputs, but that we are unable to
extract it through model comparisons like performance testing. Treating the
models statistically, we can attempt to structure this information at the level
of the ensemble and use it to guide our decision-making.

There aremany statistical methods, and comprehensive discussion of their
uses in the context of the confidence approach is a project for future research.
We here briefly outline a simple method from a natural science setting closer
to our case study: the Coupled Model Intercomparison Project (CMIP5) for
general circulationmodels (GCMs). Themethod uses point estimates and cen-
ters a nesting around the average. The foundation of this approach is “one
model, one vote” (each model is treated equally), with results generated by
simple statistical analysis. To begin, we calculate a straightforward arithmetic
mean of model outputs, �m, and use this as the center of the nesting (Stocker
et al. 2014, 754). We then calculate the variance of the output set, defined sim-
ply as s2 5 oi(mi 2 �m)2=n. Assuming error is Gaussian, one can then input
these into a Gaussian G(x) 5 c exp½(x 2 �m)2=2s2�, where c is a normaliza-
tion constant. With this in place we can calculate nested intervals directly
from the distribution. We can center on the mean and then consider various
centered intervals of the distribution: the central 50%, central 80%, and so on.
These form the sets of the nested hierarchy.

This method has limitations. The key assumption here is that all models
are of equal value—this underlies the simple arithmetic mean and uniform
variance analysis. This may seem implausible, either because not all models
are on a par or because they are not independent and so “voting”may double
count (see Knutti 2010). The center is also sensitive to the number of models
in a way that scoring approaches are not: the addition of duplicate models
may move the center without adding additional scientific information. This
approach is therefore best used in situations inwhich there is afixed and small
number of models and no method to rank them and all of their output values
are plausible—a descriptionmany climate scientists believe holds for GCMs.

Statistical methods are also common in economics (where the term “model”
is often used differently, to refer to a function of the underlying data), for in-
stance, in the robustness method of Hansen and Sargent (1982). We will not
discuss the large range of options available in this case—includingmaximum
entropy, Bayesian model averaging, and so on. These methods typically use
richer information than we have presented in this article—such as a full prob-
ability distribution rather than merely a point estimate. The confidence ap-
proach works with each of them, and at a high level of abstraction the proce-
dure is the same: center the hierarchy on the constructed central estimate
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of the relevant probability and then form confidence levels using distribu-
tional facts.

6.2.3. Working without Nesting. In the worst cases, wewill not be able to
rely on any of the foregoing methods. We may not believe any SR can ade-
quately measure model skill, be unable to identify a best model or models,
and have reasons to doubt the applicability of distribution fitting or other sta-
tistical techniques.

Stainforth, Allen, et al. (2007) argue that this is the case for GCMs in the
CMIP5 ensemble. They argue that today’s GCM ensembles provide only a
“nondiscountable envelope” of outcomes (i.e., a set of possible outcomes).
No individual model can provide a reliable central estimate, and therefore
the ensemble should not be used to create one through aggregation. Any con-
struction of a probability density function such as through the method de-
scribed above, is therefore likely to mislead decision makers through false
precision (2158). Worse, they provide only a lower bound on the range of
uncertainty, because further uncertainty exploration is likely to increase it
(Stainforth, Downing, et al. 2007, 2166). This is an extreme view—if it were
widely accepted, the Intergovernmental Panel on Climate Change (IPCC)
process would not be seen as generating anything of decision relevance—
but it is a useful limit case when considering the options within our approach.

Stainforth, Allen, et al.’s (2007) arguments for these conclusions are com-
plex, but at heart the issue is multiple uncertainties, each severe and in com-
bination so limiting that we cannot use these models to make point predic-
tions. The members of the ensemble are so interdependent, they argue, that
we should also not believe that model agreement lends any additional confi-
dence. All we can present is the range of results generated by our models and
the range of uncertainties accompanying them. These are useful: they repre-
sent informed assessments of possibility, formulated by our best experts.
They therefore determine a region of output space that is “nondiscountable”
(i.e., that we should not expect the truth to lie outside).

In situations like this, in which the ensemble is thought to represent only a
part of our uncertainty and themodel results are not particularly reliable, what
can the confidence approach say? We could follow the recipe of one of the
statistical methods above to form a hierarchy and, therefore, provide some
sense of more and less confidence-generating claims. But, when we coarse
grain to confidence levels, even the widest set in the hierarchy must be re-
garded as having low confidence—which this is now interpreted in the sense
of being nondiscountable. In order to gainmore confidence, wemust move to
yet wider sets, and here we may have little to guide us. The confidence ap-
proach tells us that if our decision is high stakes, and our cautiousness dictates
high confidence, we will have to use some wider interval than any supported
by the model ensemble (in the extreme, including [0, 1]).
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An additional problem is that theremay be serious possibilities that are not
reflected in the range of model outputs, and in such a situation it is unclear
why the envelope of the model results can be seen as narrowing down the
nondiscountable option (Betz 2013). The IPCC recognizes this possibility
and in response has endorsed the practice of “downgrading” prediction con-
fidence. Here, outcomes that are generated by examining the 5%–95% range
of model results (e.g., for global mean temperature change in 2100, under
a particular forcing scenario) are reported as merely “likely” (>66% proba-
bility) rather than “very likely” (>90% probability; Stocker et al. 2014, ta-
ble SPM.2). This way of catering for the possibility that something that the
models do not simulate happens uses expert judgment (Frigg, Thompson,
andWerndl 2015, 973). Insofar as this reassignment reflects information that
scientists hold about limitations in the prevailing modeling, it is surely more
transparent to reflect it through the confidence grading of different proba-
bility ranges than by downgrading the probabilities themselves, for exam-
ple, by reporting that the results are “very likely” at medium confidence but
“likely” at high confidence (see Mach and Field 2017; Helgeson, Bradley,
and Hill 2018).

7. Conclusion. The standard approach to working with model ensembles is
beset with problems. Aggregation relies on a nonunique predictive test and
SR, whose choice is difficult to motivate to decision makers. It requires sig-
nificant data, which may not be available. Crucially, it misrepresents the state
of scientific knowledge to decision makers by producing a single value for
p(E), without reflecting the underlying uncertainty. This is compounded by
decision makers not knowing what to do with uncertainty information, were
it to be given to them.

In the confidence approach we are as explicit as possible about uncertainty
at every stage. Decision makers are presented with a variety of options: dif-
ferent sets of probabilities, each with an attached cost to their use in the form
of the confidence it can support. One can always demandmore specificity, but
it is clear what is given up when doing so. There is a natural, and we think
valuable, link between the importance of the decision, the confidence that im-
portance demands, and the formulation of decision input.

In our insurance case study the benefits are marked. Current practice tries
to build the “missing” uncertainty back in, in a costly and ad hocmanner. The
confidence approach, however, allows decision makers to respond to uncer-
tainty in a principled but flexible manner. In practical terms this would be
done by replacing an opaque “technical” process (aggregatingmodel outputs)
with a structured process of value elicitation, in order to formulate the stakes
and cautiousness functions.

The major research question facing this approach is how to construct the
hierarchy of nested sets. In this article we have begun a partial taxonomy of
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methods for set construction and the conditions under which they are appli-
cable. Careful work is required to determine where specific cases lie, and
there are surely additional methods not covered here. One obvious candidate,
much discussed in the climate literature, is expert elicitation, which could
also be used to construct the confidence levels.

The approach outlined here is not restricted to insurance or hurricane
modeling. In principle, the approach can be expanded to cover any decision
support using a model ensemble—including nonprobabilistic outputs. Do-
ing so would better reflect uncertainty and strike a balance between cautious
decision-making in the face of uncertainty and avoiding complete decision
paralysis.
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