
Chapter 10 
When Does a Boltzmannian Equilibrium 
Exist? 

Charlotte Werndl and Roman Frigg 

Abstract We present a definition of equilibrium for Boltzmannian statistical 
mechanics based on the long-run fraction of time a system spends in a state. We 
then formulate and prove an existence theorem which provides general criteria for 
the existence of an equilibrium state. We illustrate how the theorem works with toy 
example. After a look at the ergodic programme, we discuss equilibria in a number 
of different gas systems: the ideal gas, the dilute gas, the Kac gas, the stadium gas, 
the mushroom gas and the multi-mushroom gas. 

10.1 Introduction 

The received wisdom in statistical mechanics (SM) is that isolated systems, when 
left to themselves, approach equilibrium. But under what circumstances does an 
equilibrium state exist and an approach to equilibrium take place? In this paper 
we address these questions from the vantage point of the long-run fraction of time 
definition of Boltzmannian equilibrium that we developed in our two papers Werndl 
and Frigg (2015a,b) (see also Frigg and Werndl 2019; Werndl and Frigg 2017b, 
2020). After a short summary of Boltzmannian statistical mechanics (BSM) and 
our definition of equilibrium (Sect. 10.2), we state an existence theorem which 
provides general criteria for the existence of an equilibrium state (Sect. 10.3). 
We first illustrate how the theorem works with a toy example (Sect. 10.4), which 
allows us to explain the various elements of the theorem in a simple setting. After 
looking at the ergodic programme (Sect. 10.5), we discuss equilibria in a number 
of different gas systems: the ideal gas, the dilute gas, the Kac gas, the stadium gas, 
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the mushroom gas and the multi-mushroom gas (Sect. 10.6). In the conclusion we 
briefly summarise the main points and highlight open questions (Sect. 10.7). 

10.2 Boltzmannian Equilibrium 

Our focus are systems which, at the micro level, are measure-preserving deter-
ministic dynamical systems .(X,�X,μX, Tt ).1 The set X represents all possible 
micro-states; . �X is a .σ -algebra of subsets of X; the evolution function .Tt : X → X, 
.t ∈ R (continuous time) or . Z (discrete time) is a measurable function in .(t, x) such 
that .Tt1+t2(x) = Tt2(Tt1(x)) for all .x ∈ X and all .t1, t2 ∈ R or . Z; . μX is a measure 
on . �X, which is invariant under the dynamics. That is, .μX(Tt (A)) = μX(A) for all 
.A ∈ �X and all t .2 The function .sx : R → X or .sx : Z → X, .sx(t) = Tt (x) is 
called the solution through the point .x ∈ X. 

A set of macro-variables .{v1, . . . , vl} (.l ∈ N) characterises the system at the 
macro-level. The fundamental posit of BSM is that macro-states supervene on 
micro-states, implying that a system’s micro-state uniquely determines its macro-
state. Thus the macro-variables are measurable functions .vi : X → Vi , associating 
a value with a point .x ∈ X. Capital letters . Vi will be used to denote the values 
of . vi . A particular set of values .{V1, . . . , Vl} defines a macro-state .MV1,...,Vl

. If the  
specific values . Vi do not matter, we only write ‘M’ rather than ‘.MV1,...,Vl

’. For now 
all we need is the general definition of macro-variables. We will discuss them in 
more detail in Sects. 10.3 and 10.4, where we will see that the choice of macro-
variables is a subtle and important matter and that the nature as well as the existence 
of an equilibrium state crucially depends on it. 

The determination relation between micro-states and macro-states will nearly 
always be many-to-one. Therefore, every macro-state M is associated with a macro-
region consisting of all micro-states for which the system is in M . A neglected but 
important issue is on what space macro-regions are defined. The obvious option 
would be X, but in many cases this is not what happens. In fact, often macro-regions 
are defined on a subspace .Z ⊂ X. Intuitively speaking, Z is a subset whose states 
evolve into the same equilibrium macro-state. To give an example: for a dilute gas 
with N particles X is the 6N -dimensional space of all position and momenta, but Z 
is the .6N − 1 dimensional energy hypersurface. X will be called the full state space 
and Z the effective state space of the system. The macro-region .ZM corresponding 
to macro-state M relative to Z is then defined as the set of all .x ∈ Z for which M 
supervenes on x. A set of macro-states is complete relative to Z iff (if and only if) 
it contains all states of Z. The members of a complete set of macro-regions .ZM do 
not overlap and jointly cover Z, i.e. they form a partition of Z.

1 This section is based on Werndl and Frigg (2015a,b). For a discussion of stochastic systems see 
Werndl and Frigg (2017a). 
2 At this point the measure need not be normalised. 
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Z has to be determined on a case-by-case basis, because the particulars of the 
system under consideration determine the correct choice of Z. We return to this 
point in Sect. 10.3. However, there is one general constraint on such a choice that 
needs to be mentioned now. Since a system can never leave the partition of macro-
regions, it is clear that Z must be mapped onto itself under . Tt . If such a Z is found, 
the .σ -algebra on X can be restricted to Z and one can consider a measure on Z 
which is invariant under the dynamics and normalized (i.e. .μZ(Z) = 1). In this 
way the measure-preserving dynamical system .(Z,�Z,μZ, Tt ) with a normalized 
measure . μZ is obtained.3 We call .(Z,�Z,μZ, Tt ) the effective system (as opposed 
to the full system .(X,�X,μZ, Tt )). 

.Meq is the equilibrium macrostate and the corresponding macro-region is .ZMeq . 
An important aspect of the standard presentation of BSM is that .ZMeq is the largest 
macro-region. The notion of the ‘largest macro-region’ can be interpreted in two 
ways. First, ‘largest’ can mean that the equilibrium macro-region takes up a large 
part of Z. More specifically, .ZMeq is said to be .β-dominant iff .μZ(ZMeq ) ≥ β for 

a particular .β ∈ ( 12 , 1]. If .ZMeq is .β-dominant, it is clear that it is also .β ′-dominant 
for all . β ′ in .(1/2, β). Second, ‘largest’ can mean ‘larger than any other macro-
region’. We say that .ZMeq is .δ-prevalent iff . minM �=Meq [μZ(ZMeq ) − μZ(ZM)] ≥ δ

for a particular .δ > 0, .δ ∈ R. It follows that if a .ZMeq is .δ-prevalent, then it is 
also .δ′-prevalent for all . δ′ in .(0, δ). We do not adjudicate between these different 
definitions; either meaning of ‘large’ can be used to define equilibrium. However, 
we would like to point out that they are not equivalent: if an equilibrium macro-
region is .β-dominant, there is a range of values for . δ so that the macro-region is 
also .δ-prevalent for these values. However the converse fails. 

Now the question is: why is the equilibrium state .β-dominant or .δ-prevalent? A 
justification ought to be as close as possible to the thermodynamics (TD) notion of 
equilibrium. In TD a system is in equilibrium just in case change has come to a halt 
and all thermodynamic variables assume constant values (cf. Reiss 1996, 3).  This  
would suggest a definition of equilibrium according to which every initial condition 
lies on trajectory for which .{v1, . . . , vk} eventually assume constant values. Yet this 
is unattainable for two reasons. First, because of Poincaré recurrence, the values of 
the . vi will never reach a constant value and keep fluctuating. Second, in dynamical 
systems we cannot expect all initial conditions to lie on trajectories that approach 
equilibrium (see, e.g., Callender 2001). 

To do justice to these facts about dynamical systems we revise the TD definition 
slightly and define equilibrium as the macro-state in which trajectories starting in 
most initial conditions spend most of their time. This is not a feeble compromise. 
Experimental results show that physical systems exhibit fluctuations away from 
equilibrium (Wang et al., 2002). Hence, strict TD equilibrium is actually unphysical 
and a definition of equilibrium that makes room for fluctuations is empirically more 
adequate.

3 The dynamics is given by the evolution equations restricted to Z. We follow the literature by 
denoting it again by . Tt . 
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To make this idea precise we introduce the long-run fraction of time a system 
spends in a region .A ∈ �Z when the system starts in micro-state x at time .t = 0: 

. LFA(x) = lim
t→∞

1

t

∫ t

0
1A(Tτ (x))dτ for continuous time, i.e. t ∈ R, (10.1)

LFA(x) = lim
t→∞

1

t

t−1∑
τ=0

1A(Tτ (x)) for discrete time, i.e. t ∈ Z,

where .1A(x) is the characteristic function of A, i.e. .1A(x) = 1 for .x ∈ A and 0 
otherwise. Note that a measure-preserving dynamical system .(Z,�Z,μZ, Tt ) with 
the normalized measure . μZ is ergodic iff for any .A ∈ �Z: 

.LFA(x) = μZ(A), (10.2) 

for all .x ∈ Z except for a set W with .μZ(W) = 0. 
The locution ‘most of their time’ is beset with the same ambiguity as the ‘largest 

macro-state’. On the first reading ‘most of the time’ means more than half of the 
total time. This leads to the following formal definition of equilibrium: 

BSM .α-.ε-Equilibrium. Consider an isolated system S whose macro-states are specified 
in terms of the macro-variables .{v1, . . . , vk} and which, at the micro level, is a measure-
preserving deterministic dynamical system .(Z,�Z,μZ, Tt ). Let  . α be a real number in 
.(0.5, 1], and  let .1 	 ε ≥ 0 be a very small real number. If there is a macrostate . MV ∗

1 ,...,V ∗
k

satisfying the following condition, then it is the .α-.ε-equilibrium state of S: There exists a 
set .Y ⊆ Z such that .μZ(Y ) ≥ 1 − ε, and all initial states .x ∈ Y satisfy 

.LFZM
V ∗
1 ,...,V ∗

l

(x) ≥ α. (10.3) 

We then write .Mα-ε-eq := MV ∗
1 ,...,V ∗

k
. 

An obvious question concerns the value of . α. Often the assumption seems to be 
that . α is close to one. This is reasonable but not the only possible choice. For our 
purposes nothing hangs on a the value of . α and so we leave it open what the best 
choice would be. 

On the second reading ‘most of the time’ means that the system spends more 
time in the equilibrium macro-state than in any other macro-state. This idea can be 
rendered precise as follows: 

BSM .γ -.ε-Equilibrium. Consider an isolated system S whose macro-states are specified 
in terms of the macro-variables .{v1, . . . , vk} and which, at the micro level, is a measure-
preserving deterministic dynamical system .(Z,�Z,μZ, Tt ). Let  . γ be a real number in 
.(0, 1] and let .1 	 ε ≥ 0 be a very small real number. If there is a macro-state . MV ∗

1 ,...,V ∗
l

satisfying the following condition, then it is the .γ -. ε equilibrium state of S: There exists a 
set .Y ⊆ Z such that .μZ(Y ) ≥ 1 − ε and for all initial conditions .x ∈ Y : 

.LFZM
V ∗
1 ,...,V ∗

l

(x) ≥ LFZM
(x) + γ (10.4) 

for all macro-states .M �= MV ∗
1 ,...,V ∗

l
. We then write .Mγ -ε-eq := MV ∗

1 ,...,V ∗
k
.
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As above, nothing in what we say about equilibrium depends on the particular 
value of the parameter . γ and so we leave it open what the best choice would be. 

We contend that these two definitions provide the relevant notion of equilibrium 
in BSM. It is important to emphasise that they remain silent about the size of 
equilibrium macro-regions, and do not in any obvious sense imply anything about 
seize. Indeed, equilibrium marco-regions being extremely small would be entirely 
compatible with the definitions. That these macro-regions have the right size is a 
result established in the following two theorems: 

Dominance Theorem: If .Mα-ε-eq is an .α-.ε-equilibrium of system S, then . μZ(ZMα-ε-eq ) ≥ β

for .β = α(1 − ε).4 

Prevalence Theorem: If  .Mγ -ε-eq is a .γ -.ε-equilibrium of system S, then  . μZ(ZMγ -ε-eq ) ≥
μZ(ZM) + δ for .δ = γ − ε for all macro-states .M �= Mγ -ε-eq .5 

Both theorems are completely general in that no dynamical assumptions are made 
(in particular it is not assumed that systems are ergodic—cf. Eq. (10.2)), and hence 
the theorems also apply to strongly interacting systems. 

An important aspect of the above definitions of equilibrium is that the presence of 
an approach to equilibrium is built into the notion of an equilibrium state. If a state 
is not such that the system spends most of the time in that state (in one of the two 
senses specified), then that state simply is not an equilibrium state. In other words, 
if the system does not approach equilibrium, then there is no equilibrium. Having 
an equilibrium state and there being an approach to equilibrium are two sides of the 
same coin. 

The theorems make the conditional claim that if an equilibrium exits, then it is 
large in the relevant sense. Some systems do not have equilibria. If, for instance, 
the dynamics is given by the identity function, then no approach to equilibrium 
takes place, and the antecedent of the conditional is wrong. As with all conditionals, 
the crucial question is whether, and under what conditions, the antecedent holds. 
We turn to this issue now. As we have just seen, the question whether there is an 
equilibrium state is tantamount to the question whether the approach to equilibrium 
takes place, and so the issue of existence is not merely an inconsequential subtlety 
in mathematical physics—it concerns one of the core questions in SM. 

10.3 The Existence of an Equilibrium Macro-State 

We now turn to the core question of this paper: under what circumstances does 
a Boltzmannian equilibrium macro-state exist? The main message is that for an 
equilibrium to exist three factors need to cooperate: the choice of macro-variables,

4 We assume that . ε is small enough so that .α(1 − ε) > 1
2 . 

5 We assume that .ε < γ . 
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the dynamics of the system, and the choice of the effective state space Z. The  
cooperation between these factors can take different forms and there is more than 
one constellation that can lead to the existence of an equilibrium state. The important 
point is that the answer to the question of existence is holistic: it not only depends 
on three factors rather than one, but also on the interplay between these factors. For 
these reasons we call these three factors the holist trinity. 

A number of previous proposals fail to appreciate this point. The problem of 
the approach to equilibrium has often been framed as the challenge to identify one 
crucial property and show that the relevant systems possess this property. We first 
introduce the trinity in an informal way and illustrate it with examples, showing 
what requisite collaborations look like and what can go wrong. This informal 
presentation is followed by a rigorous mathematical theorem providing necessary 
and sufficient conditions for the existence of an equilibrium state. 

10.3.1 The Holist Trinity 

Macro-Variables The first condition is that the macro-variables must be the 
‘right’ ones: the same system can have an equilibrium with respect to one set 
of macro-variables and fail to have an equilibrium with respect to another set of 
macro-variables. The existence of an equilibrium depends as much on the choice 
of macro-variables as it depends on the system’s dynamical properties. Different 
choices are possible, and these choices lead to different conclusions about the 
equilibrium behaviour of the system. This will be illustrated below in Sect. 10.4 
with the example of the simple pendulum.6 

This also implies that if no macro-variables are introduced, considerations of 
equilibrium make no sense at all. Obvious as this may seem, some confusion has 
resulted from ignoring this simple truism. Sklar (1973, 209) mounts an argument 
against the ergodic approach by pointing out that a system of two hard spheres in 
a box has the right dynamical property (namely ergodicity) and yet fails to show 
an approach to equilibrium. It hardly comes as a surprise, though, that there is no 
approach to equilibrium if the system has no macro-variables associated with it in 
terms of which equilibrium could even be defined. 

Dynamics The existence of an equilibrium depends as much on the dynamics 
of the system as it depends on the choice of macro-variables. Whatever the 
macro-variables, if the dynamics does not ‘collaborate’, then there is no approach 
to equilibrium. For this reason the converses of the Dominance and Prevalence 
Theorems fail: it is not the case that if there is a β-dominant/δ-prevalent macro-
region, then this macro-region corresponds to a α-ε-equilibrium/γ -ε-equilibrium. 
If, for instance, the dynamics is the identity function, then there can be no approach

6 For further examples see Werndl and Frigg (2015a). 
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to equilibrium because states in a small macro-region will always stay in this region. 
Or assume that there is a system whose dynamics is such that micro-states that 
are initially in the largest macro-region always remain in the largest macro-region 
and states initially in smaller macro-regions only evolve into states in these smaller 
macro-regions. Then there is no approach to equilibrium because non-equilibrium 
states will not evolve into equilibrium. This point will also be illustrated with the 
example of the simple pendulum in Sect. 10.4. 

Identifying Z A number of considerations in connection with equilibrium depend 
on the choice of the effective state space Z, which is the set relative to which macro-
regions are defined. Indeed, the existence of an equilibrium state depends on the 
correct choice of Z. There can be situations where a system has an equilibrium 
with respect to one choice of Z but not with respect another choice of Z. One can 
choose Z too small, and, as a consequence, it will not be true that most initial states 
approach equilibrium and hence there will be no equilibrium (recall that on our 
definition the system has no equilibrium if it does’t approach equilibrium). One 
can, however, make the opposite mistake and choose Z too large. If there is an 
equilibrium relative to some set Z, it need not be the case that an equilibrium exists 
also on a superset of this set. So Z can be chosen too large as well as too small. 
That Z can be chosen too large will be illustrated with the example of the simple 
pendulum in Sect. 10.4. 

There is no algorithmic procedure to determine Z, but one can pinpoint a 
number of relevant factors. The most obvious factors are constraints and boundary 
conditions imposed on the system. If a system cannot access certain parts of X, then 
these parts are not in Z. In all examples below we see parts of X being ‘cut off’ 
when constructing Z because of mechanical restrictions preventing the system from 
entering certain regions. Another important factor in determining Z are conserved 
quantities. Their role, however, is less clear-cut than one might have hoped for. It is 
not universally true that Z has to lie within a hyper-surface of conserved quantities. 
Whether Z is so constrained depends on the macro-variables. Consider the example 
of energy. In some cases (the dilute gas in Sect. 10.6, for instance), equilibrium 
values depend on the energy of the system (equilibrium states are different for 
different energies) and hence Z must lie within an energy hyper-surface. In other 
cases (the oscillator in Sect. 10.4, for instance) equilibrium is insensitive toward 
changes in the system’s energy (the equilibrium state is the same for all energy 
values) and therefore Z is not confined to an energy hyper-surface. This brings home 
again the holist character of the issue: Z not only depends on mechanical invariants 
and constraints, but also on the macro-variables. 

The interplay between these factors is illustrated with a simple toy model in 
Sect. 10.4. Due to its simplicity, it is tangible how the three factors mutually 
constrain each other and it becomes clear how sensitively the existence of an 
equilibrium depends on the careful balance of these factors. In Sect. 10.6 we discuss 
how these considerations play out in different gas systems.
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10.3.2 The Existence Theorem 

In this subsection we present the Equilibrium Existence Theorem, a theorem 
providing necessary and sufficient conditions for the existence of an equilibrium 
state (either of the .α-. ε or the .γ -. ε type).7 Before stating the theorem we have to 
introduce another theorem, the Ergodic Decomposition Theorem (cf. Petersen 1983, 
81). An ergodic decomposition of a system is a partition of the state space into cells 
so that the cells are invariant under the dynamics (i.e., are mapped onto themselves) 
and that the dynamics within each cell is ergodic (cf. Eq. (10.2) for the definition of 
ergodicity).8 

The Ergodic Decomposition Theorem says that such a decomposition exists for 
every measure-preserving dynamical system with a normalised measure, and that 
the decomposition is unique. In other words, the dynamics of a system can be as 
complex as we like and the interactions between the constituents of the system 
can be as strong and intricate as we like, and yet there exists a unique ergodic 
decomposition of the state space of the system. A simple example of the theorem is 
the harmonic oscillator: the ellipses around the coordinate origin are the cells of the 
partition and the motion on the ellipses is ergodic. 

For what follows it is helpful to have a more formal rendering of an ergodic 
decomposition. Consider the system .(Z,�Z,μZ, Tt ). Let . 
 be an index set (which 
can but need not be countable), which comes equipped with a probability measure . ν. 
Let . Zω, .ω ∈ 
, be the cells into which the system’s state space can be decomposed, 
and let .�ω and . μω, respectively, be the sigma algebra and measure defined on 
. Zω. These can be gathered together in ‘components’ .Cω = (Zω,�ω,μω, Tt ). The  
Ergodic Decomposition Theorem says that for every system .(Z,�Z,μZ, Tt ) there 
exists a unique set of ergodic . Cω so that the system itself amounts to the collection 
of all the . Cω. How the ergodic decomposition theorem works will be illustrated with 
the example in the next section. 

We are now in a position to state our core result: 

Equilibrium Existence Theorem: Consider a measure-preserving system . (Z,�Z,μZ, Tt )

with macro-regions .ZMV1,...,Vl
and let .Cω = (Zω,�ω,μω, Tt ), .ω ∈ 
, be its ergodic 

decomposition. Then the following two biconditionals are true: 
.α-.ε-equilibrium: There exists an .α-.ε-equilibrium iff there is a macro-state . M̂ such that 

for every . Cω: 

.μω(Zω∩Z
M̂

) ≥ α, (10.5) 

except for components . Cω with .ω ∈ 
′, .μZ(∪ω∈
′Zω) ≤ ε. . M̂ is then the .α-.ε-equilibrium 
state.

7 The proof is given in Werndl and Frigg (2015a). 
8 It is allowed that the cells are of measure zero and that there are uncountably many of them. 



10 When Does a Boltzmannian Equilibrium Exist? 255

.γ -.ε-equilibrium: There exists a .γ -.ε-equilibrium iff there is a macro-state . M̂ such that 
for every . Cω and any . M �= M̂

.μω(Zω∩Z
M̂

) ≥ μω(Zω∩ZM) + γ, (10.6) 

except for components . Cω with .ω ∈ 
′, .μZ(∪ω∈
′Zω) ≤ ε. . M̂ is then the .γ -.ε-equilibrium 
state. 

Like the theorems we have seen earlier, the Equilibrium Existence Theorem is 
fully general in that it makes no assumptions about the system’s dynamics other 
than that it be measure-preserving. Intuitively the theorems say that there is an .α-.ε-
equilibrium (.γ -.ε-equilibrium) iff if the system’s state space is split up into invariant 
regions on which the motion is ergodic and the equilibrium macro-state takes up 
at least . α of each region (the equilibrium region is at least . γ larger than any other 
macro-region), except, possibly, for regions of total measure . ε. If we have found a 
space that meets these conditions, then it plays the role of the effective state space 
Z. 

It is important to note that there may be many different macro-state/dynamics/Z 
triplets that make the Existence Theorem true. The Theorem gives the foundation 
for a research programme aiming to find and classify such triplets. But before 
discussing a number of interesting cases, we want to illustrate the theorem in the 
simplest possible setting. This is our task in the next section. 

10.4 Toy Example: The Ideal Pendulum 

Consider an ideal pendulum: a small mass m hanging on a 1 meter long massless 
string from the ceiling. The mass moves without friction. When displaced, the mass 
will oscillate around its midpoint. We displace the pendulum only in one spatial 
direction and so the motion takes place in plane perpendicular to the ceiling. The 
weight of the bob mg, where g is the gravitational constant, has components parallel 
and perpendicular to the rod. The component perpendicular to the rod is .−mg sin(x), 
where x is the angular displacement. This component accelerates the bob, and hence 
we can apply Newton’s second law: 

.m
d2x

dt2
= −mg sin(x) (10.7) 

For the simple pendulum the further assumption is made that the angular displace-
ment is small (of absolute value less than 15. ◦). Then .sin(x) ≈ x, and the equation 
reduces to: 

.
d2x

dt2
= −gx. (10.8) 

This equation describes simple harmonic motion.
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Fig. 10.1 The ergodic 
decomposition of the 
harmonic oscillator 

That is, the full phase space X is given by the possible angular displacement and 
angular velocity coordinates .(x, v), where the angular displacement is assumed to 
be less than 15. ◦; and thus the displacement as well as the velocity is bounded from 
above). Solving the differential Eq. (10.8) above gives 

. x(t) = A cos(λt − φ)

v(t) = dx

dt
= −Aλ sin(λt − φ), (10.9) 

where .λ = √
g, A is the amplitude (the maximum displacement from the midpoint), 

and . φ is the phase (the shift of the cosine and sinus functions along the time axis). A 
and . φ are determined by the initial angular displacement and initial angular velocity. 

From these equations we see that the solutions .Tt (x, v) are ellipses and the full 
phase spaceX is composed of these ellipses. This is illustrated in Fig. 10.1. . �X is the 
Borel .σ -algebra on X, and the measure . μX on the phase space X is the normalized 
measure that arises by demanding that the system sweeps out equal measures during 
equal time intervals. Taking these elements together yields the measure-preserving 
dynamical system .(X,�X,μX, Tt ). 

The effective phase space, i.e. the phase space relative to which equilib-
rium is defined, is in this case identical with X, and thus . (Z,�Z,μZ, Tt ) =
(X,�X,μX, Tt ). We now illustrate the roles the macro-variables, the dynamics 
and the effective state space play in securing the existence of an equilibrium 
by discussing different choices and showing how they affect the existence of an 
equilibrium. 

10.4.1 The Role of Macro-Variables 

Consider .(Z,�Z,μT , Tt ) with the colour macro-variable . vc, a light bulb that can 
emit red and white light. So .Vc = {r, w}, were ‘r’ stands for red and ‘w’ for white. 
The mapping is as follows: if the pendulum is on the right hand side of the midpoint 
and on its way back to the midpoint, then the light is red; the light is white otherwise.
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Fig. 10.2 The colour 
macro-variable . vc: if system’s 
state is in the grey area the 
light is red; if it is in the white 
area the light is white 

This defines two macro-states . Mr and . Mw. The macro-region .ZMr is the grey area 
in Fig. 10.2 and .ZMw is the white area. 

Since the ideal pendulum oscillates with a constant frequency, .Mw is a .0.75-0-
equilibrium of the .α-. ε type: on each trajectory the light is white for three-quarters 
of the time and red for one quarter of the time. Thus, by the Dominance Theorem, 
.μ(ZMw) ≥ 0.75 (and we have .μ(ZMr ) = 0.25). .Mw is in fact also a .0.5-0-
equilibrium of the .γ -. ε type because the systems spends 0.5 more time in .Mw than 
in . Mr . Thus by the Prevalence Theorem: .μ(ZMw) ≥ μ(ZMr ) + 0.5 for all .ZMr . 

Let us now discuss how the situation presents itself in terms of the Existence 
Theorem. To this end we first have a look at the ergodic decomposition theorem. The 
theorem says that Z can be decomposed into components .Cω = (Zω,�ω,μω, Tt ). 
In the case of the harmonic oscillator, the ergodic decomposition is the (uncount-
able) family of ellipses given by Eq. (10.9) and shown in Fig. 10.1. Each . Zω is a 
two-dimensional ellipse determined by the initial energy (the energy is determined 
by the initial displacement and velocity coordinates .(x, v)). The . Zω are the ellipses 
themselves; .�ω and . μω are the standard Borel sets on a line and the normalised 
measure on a line that arises by demanding that the system sweeps out equal 
lengths during equal times intervals; and . Tt is the time evolution given by Eq. (10.9) 
restricted to the ellipses. It is easy to see that the motion on each ellipse is 
ergodic. The decomposition is parameterised by . ω, which in this case has a physical 
interpretation: it is the energy of the system. . 
 is the (uncountable) set of energy 
values between zero and the energy corresponding to a 15. ◦ angular displacement, 
and the measure . ν on . 
 is the standard Lebesgue measure. 

Equation (10.5) holds true for every component .Cω = (Zω,�ω,μω, Tt ) because 
on each ellipse three-quarters of the states correspond to a white light and one 
quarter to a red light, and hence .μω(Zω ∩ZMw) ≥ 0.75. Hence .Mw satisfies the 
condition for an .α-.ε-equilibrium with .α = 0.75 and .ε = 0. Likewise, Eq. (10.6) 
holds true for every component .Cω = (Zω,�ω,μω, Tt ) because on each ellipse 
three-quarters of the states correspond to a white light and one quarter to a red light, 
and hence .μω(Zω ∩ZMw) ≥ μω(Zω ∩ZM) + 0.5 for all .ZM �= ZMw . Hence . Mw

satisfies the condition for an .γ -.ε-equilibrium with with .γ = 0.5 and .ε = 0. 
Now consider a different macro-variable . v′

c. It is defined like . vc but with one 
crucial difference: the light is red when the pendulum is on the right side irrespective 
of whether it is moving towards or away from the midpoint. The light is white
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Fig. 10.3 The light bulb 
macro-variable . v′

c: if system’s 
state is in the grey area the 
light is red; if it is in the white 
area the light is white 

when the pendulum is on the left side or exactly in the middle. This is illustrated 
in Fig. 10.3, where .ZMr is the grey and .ZMw is the white area. With respect to . v′

c the 
system has no equilibrium. For all solutions the red and the white light are each on 
half of the time, and both macrostates have equal measure . 0.5. 

From the vantage point of the Existence theorem, the situation presents itself as 
follows. Equations (10.5) and (10.6) cannot hold true any more because for every 
component .Cω = (Zω,�ω,μω, Tt ) half of the states correspond to a white light and 
a half of the states correspond to a red light. Hence the conditions of the Existence 
Theorem are not satisfied. This example illustrates that a small change in the macro-
variable is enough to take us from a situation in which an equilibrium exists to one 
in which there is no equilibrium. 

10.4.2 The Role of the Dynamics 

As we have just seen, there exist equilibria of both types for the simple pendulum 
.(Z,�Z,μZ, Tt ) with the macro-variable . vc. We now change the dynamics: place 
a wall of negligible width exactly at the midpoint (perpendicular to the plane of 
motion) and assume that the pendulum bounces elastically off the wall. Denote this 
dynamics by . T ′

t . If the pendulum starts on the right hand side, it will always stay on 
the right hand side. On that side the white and the red light are on half of the time 
each and so the system has no equilibrium for initial conditions on the right hand 
side. This violates the condition (in both definitions of equilibrium) that there is at 
most a small set of initial conditions (of measure . < ε) for which the system does 
not satisfy the relevant equations (Eqs. (10.3) and (10.4) respectively). Hence, the 
system .(Z,�Z,μZ, T ′

t ) with the macro-variable . vc has no equilibrium. 
Let us look at the situation through the lens of the Existence Theorem. The 

ergodic decomposition is now more complicated than above. There are again 
uncountably many components . C′

ω. Yet because of the different dynamics, they are 
half-ellipses rather than ellipses. More specifically, the index set is .
′ = 
1 ∪ 
2, 
where . 
1 consist of the uncountably many different values of the energy for systems 
that start out on the right hand side, and . 
2 consist of the uncountably many 
different values of the energy for systems that do not start on the right hand side.
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Each . Z′
ω is a two dimensional half-ellipse determined by the initial energy and 

whether the system starts on the right or the left. The sigma-algebra . �′
ω is the usual 

Borel .σ -algebra on . Z′
ω and the measure . μ′

ω is the normalized measure that arises 
if one restricts the measure we considered in the previous subsection to each half-
ellipse . Z′

ω and divides it by 2. The dynamics on the ellipses is again given by the 
restriction of . T ′

t to the half-ellipses . Z′
ω. Taking these elements together gives us 

the components .Cvω = (Z′
ω,�′

ω, μ′
ω, T ′

t ), and it is clear that the motion on each 
component is ergodic. 

Now consider the components . Cω that correspond to the case where the pendu-
lum starts on the right hand side. Note that measure . μZ of all these components 
taken together is . 1/2. Yet half of any of these components is made up of states 
corresponding to the light being white and the remaining half is made up of states 
for which the light is red. Consequently, for these components Eqs. (10.5) and (10.6) 
cannot hold true. Thus the Existence Theorem is not satisfied because the condition 
is violated that there is at most a small set of initial conditions for which the system 
does not satisfy the relevant equations. 

10.4.3 The Role of the Effective Phase Space 

So far we discussed a simple pendulum with a one-dimension position coordinate. 
Let us now consider the different setup where the pendulum’s position coordinate 
is not one-dimensional but two-dimensional (and, again, we impose the constraint 
that the maximum displacement in any spatial direction is .≤ 15◦), allowing the 
pendulum to oscillate in two directions, x and y. We now impose the constraint that 
the pendulum oscillates along a line going through the coordinate origin, and the 
time evolution . T ′′

t along this line is in fact the same as above, but now described 
with two-dimensional angular displacement coordinates. The full state space of the 
system . X′′ is thus a three-dimensional ellipsoid: the first two coordinates are the 
displacement coordinates x and y, and the third coordinate gives the velocity along 
the line cutting through the origin. .�X′′ is again the Borel .σ -algebra on . X′′, and . μX′′
is the measure that arises when in equal times an equal area is swept out (for the 
dynamics as explained below). Then .(X′′, �X′′ , μX′′ , T ′′

t ) is a measure-preserving 
dynamical system. 

Now consider the two-dimensional colour macro variable . v′′
c , which can take 

three values: red, white and blue. So .V′′
c = {r, w, b}. Because the displacement 

coordinates are constrained to a line, the displacement coordinate of a solution either 
oscillates between the first and the third quadrant or between the second and the 
fourth quadrant. Suppose that if the pendulum is in the first quadrant, the light is 
red; if the pendulum is in the second quadrant, then the light is blue if the pendulum 
is on its way to back to the midpoint and white if it moves away from the midpoint 
or is exactly at the midpoint. If the pendulum is in the third quadrant, then the light 
is red if the pendulum is on its way back to the midpoint and white if it moves away 
from the midpoint or is exactly at the midpoint. If the pendulum is in the fourth
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Fig. 10.4 The colour 
macro-variable . v′′

c

quadrant the light is white. This is illustrated in Fig. 10.4. It is then easy to see that 
.μX′′(X′′

Mw
) = 1/2, .μX′′(X′′

Mr
) = 3/8 and .μX′′(X′′

Mb
) = 1/8. 

Since the motion of the pendulum lies on a straight line through the midpoint, 
it always oscillates either between the first and the third quadrant, or between the 
second and the fourth quadrant. Therefore, for all trajectories with initial conditions 
either in the first or the third quadrant, the light is red 75% of the time and white 
25% of the time; for trajectories with initial conditions in the second and the 
fourth quadrant the light is white 75% of the time and blue 25% of the time. But 
neither white nor red is an equilibrium because half of all initial conditions lie on 
trajectories that only spend 25% of the time in the white state, and the other half of 
initial conditions lie on trajectories that spend no time at all in the red state. This 
violates the requirement that initial conditions that don’t spend most of the time in 
equilibrium form a set that has at most measure .ε � 1.9 

However, this seems to be the wrong conclusion because intuitively there are 
equilibria: for initial states with displacement coordinates in the first or the third 
quadrant the light is red 75% of the time and hence red seems an equilibrium 
for states in those quadrants, and likewise for initial states in the second or forth 
quadrant for which the light is white 75% of the time. The root of the rift between 
mathematical criteria and intuition is that we tacitly took the entire state space . X′′
to be the effective state space Z, and with respect to . X′′ the conditions for the 
existence of an equilibrium are not satisfied. But nothing forces us to set .Z = X′′. 
In fact an alternative choice of Z restores existence. Let . Z1 be the union of the 
first and the third quadrants. One can then easily construct the effective dynamical 
system .(Z1, �Z1 , μZ1 , T ′′), where .�Z1 is the Borel .σ -algebra on . Z1, .μZ1 is the 
measure .μX′′ restricted to . Z1 and . T ′′ is the dynamics restricted to . Z1. It is obvious  
that for that system the light being red is a an .0.75-0-equilibrium of the .α-. ε type 
and a .0.5-0-equilibrium of the .γ -. ε type. And the same moves are available for the

9 This example also shows that the largest macro-state need not be the equilibrium state: .X′′
Mw

takes 
up .1/2 of . X′′ and yet .Mw is not the equilibrium state. 
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other two quadrants. Let . Z2 be the union of the second or the fourth quadrant. 
The corresponding effective dynamical system is .(Z2, �Z2, μZ2 , T ′′), where . �Z2

is the Borel .σ -algebra on . Z2, .μZ2 is the measure .μZ′′ restricted to . Z2 and . T ′′ is 
the dynamics restricted to . Z2. It is then obvious that the light being white is a an 
.0.75-0-equilibrium of the .α-. ε type and a .0.5-0-equilibrium of the .γ -. ε type. 

This example illustrates that the choice of the effective phase space Z is crucial 
for the existence of an equilibrium. With the wrong choice of Z—the full three-
dimensional state space—no equilibrium exists. But if we choose either . Z1 or . Z2

as the effective state space, then there are equilibria. 
Let us explain why the Existence Theorem is satisfied for these effective 

dynamical systems. We first focus on .(Z1, �Z1, μZ1 , T ′′). The index set is . 
′′ =

3×
4, where . 
3 consist of the possible energies of the system and each .ω4 ∈ 
4, 
.
4 = (0, π/2], denotes an angle and thus a line cutting through the coordinate 
origin in the first (and therefore also third) quadrant. The measure on . 
′′ arises from 
the product measure .μ
3 × μ
4 , where .μ
3 is the uniform measure on the energy 
values and .μ
4 is the uniform measure on .(0, π/2]. Each . Z′′

ω is a two-dimensional 
ellipse determined by the initial energy and displacement coordinates; the sigma-
algebra .�′′

ω is the usual Borel .σ -algebra, and the measure . μ′′
ω is the normalised 

measure as above on the ellipse . Z′′
ω. The dynamics on the ellipses is again given 

by the restriction of . T ′′
t to the ellipses . Z′′

ω. This gives us the components . C′′
ω =

(Z′′
ω,�ω′′ , μ′′

ω, T ′′
t ). Again, it is clear that the motion on each component is ergodic. 

Now the Existence Theorem is satisfied for the same reason it is satisfied for the 
pendulum with a one-dimensional position coordinate, namely: Eq. (10.5) holds true 
for every arbitrary component . C′′

ω because on each ellipse three-quarters of the states 
correspond to a red light and one quarter to a white light, and hence . μ′′

ω(Z′′
ω∩Z1

Mr
) ≥

0.75. Similarly, Eq. (10.5) holds true for every arbitrary component . C′′
ω because on 

each ellipse three-quarters of the states correspond to a white light and one quarter 
to a red light, and hence .μ′′

ω(Z′′
ω∩Z1

Mr
) ≥ μ′′

ω(Z′′
ω∩Z1

M) + 0.5 for all .Z1
M �= Z1

Mr
. 

Analogue reasoning for . Z2 shows that also for .(Z2, �Z2, μZ2 , T ′′) the Eqs. (10.5) 
and (10.6) of the Existence Theorem are satisfied. 

10.5 A Fresh Look at the Ergodic Programme 

The canonical explanation of equilibrium behaviour is given within the ergodic 
approach. Before looking at further examples, it is helpful to revisit this approach 
from the point of view of the Existence Theorem. We show that the standard ergodic 
approach in fact provides a triplet that satisfies the above conditions. 

Many explanations of the approach to equilibrium rely on the dynamical condi-
tions of ergodicity or epsilon-ergodicity (see Frigg, 2008) and references therein). 
The definition of ergodicity was given above (Eq. 10.2). A system . (Z,�Z,μZ, Tt )

is epsilon-ergodic iff it is ergodic on a set .Ẑ ⊆ Z of measure .1 − ε where . ε is a
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very small real number.10 The results of this paper clarify these claims. As pointed 
out in the previous subsection, if the macro-variables are not the right ones, then 
neither ergodicity nor epsilon-ergodicity imply that the approach to equilibrium 
takes place. However proponents of the ergodic approach often assume that there 
is a macro region which is either .β-dominant or .δ-prevalent (e.g. Frigg and Werndl 
2011, 2012). Then this leads to particularly simple instance the Existence Theorem, 
which then implies that the macro-region corresponds to an .α-.ε-equilibrium or a 
.γ -.ε-equilibrium. More specifically, the following two corollaries hold (for proofs 
seee Werndl and Frigg 2015a): 

Ergodicity-Corollary: Suppose that the measure-preserving system .(Z,�Z,μZ, Tt ) is 
ergodic. Then the following are true: (a) If the system has a macro-region .Z

M̂
that is 

.β-dominant, . M̂ is an .α-.ε-equilibrium for .α = β and .ε = 0. (b) If the system has a macro-
region .Z

M̂
that is .δ-prevalent, . M̂ is a .γ -.ε-equilibrium for .γ = δ and .ε = 0. 

Epsilon-Ergodicity-Corollary: Suppose that the measure-preserving system . (Z,�Z,μZ, Tt )

is epsilon-ergodic. Then the following are true: (a) If the system has a macro-region . Z
M̂

that is .β-dominant for .β − ε > 1
2 , .ZM̂

is a .α-.ε-equilibrium for .α = β − ε. (b) If the system 
has a macro-region .Z

M̂
that is .δ-prevalent for .δ − ε > 0, .Z

M̂
is a .γ -.ε-equilibrium for 

.γ = δ − ε. 

It is important to keep in mind, however, that ergodicity and epsilon-ergodicity 
are just examples of dynamical conditions for which an equilibrium exists. As 
shown by the Existence Theorem, the dynamics need not be ergodic or epsilon-
ergodic for there to be an equilibrium. 

10.6 Gases 

We now discuss gas systems that illustrate the core theorems of this paper. We start 
with well-known examples—the dilute gas, the ideal gas and the Kac gas—and then 
turn to lesser-known systems that illustrate the role of the ergodic decomposition 
and the .ε-set of initial conditions that can be excluded. We first discuss a simple 
example where the dynamics is ergodic, namely a gas of noninteracting particles in 
a stadium-shaped box. Then we turn to an example of a system with an .ε-set that 
is excluded because the system is epsilon-ergodic, namely a gas of noninteracting 
particles in a mushroom-shaped box. Finally, we examine a more complicated gas 
system where there are several ergodic components and an .ε-set that is excluded, 
namely a gas of noninteracting particles in a multi-mushroom box.

10 In detail: .(Z,�Z,μZ, Tt ) is .ε-ergodic, .ε ∈ R, 0 ≤ ε < 1, iff there is a set .Ẑ ⊂ Z, . μZ(Ẑ) =
1 − ε, with  .Tt (Ẑ) ⊆ Ẑ for all t , such that the system .(Ẑ, �

Ẑ
, μ

Ẑ
, Tt ) is ergodic, where .�Ẑ

and 

. μ
Ẑ
is the .σ -algebra . �Z and the measure . μZ restricted to . Ẑ. A system .(Z,�Z,μZ, Tt ) is epsilon-

ergodic iff there exists a very small . ε for which the system is .ε-ergodic. 
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10.6.1 The Dilute Gas 

A dilute gas is a system a system of N particles in a finite container isolated from 
the environment. Unlike the particles of the ideal gas (which we consider in the next 
subsection), the particles of the dilute gas do interact with each other, which will be 
important later on. We first briefly review the standard derivation of the Maxwell-
Boltzmann distribution with the combinatorial argument and then explain how the 
argument is used in our framework. 

A point .x = (q, p) in the 6N -dimensional set of possible position and 
momentum coordinates X specifies a micro-state of the system. The classical 
Hamiltonian .H(x) determines the dynamics of the system. Since the energy is 
preserved, the motion is confined to the .6N − 1 dimensional energy hyper-surface 
. XE defined by .H(x) = E, where E is the energy of the system. X is endowed with 
the Lebesgue measure . μ, which is preserved under . Tt . With help of . μ a measure . μE

on . XE can be defined which is preserved as well and is normalised, i.e. . μE(XE) = 1
(cf. Frigg, 2008, 104). 

To derive the Maxwell-Boltzmann distribution we consider the 6-dimensional 
state space . X1 of one particle. The state of the entire gas is given by N points in . X1. 
Because the system has constant energy E and is confined to a finite container, 
only a finite part of . X1 is accessible. This accessible part of . X1 is partitioned 
into cells of equal size .δdg whose dividing lines run parallel to the position 
and momentum axes. This results in a finite partition .
dg := {ωdg

1 , . . . , ω
dg
l }, 

.l ∈ N (‘dg’ stands for ‘dilute gas’). The cell in which a particle’s state lies is its 
coarse-grained micro-state. An  arrangement is a specification of coarse-grained 
micro-state of each particle. Let . Nibe the number of particles whose state is in 
cell . ωdg

i . A  distribution .D = (N1, N2, . . . , Nl) is a specification of the number of 
particles in each cell. Several arrangements are compatible with each distribution, 
and the number .G(D) of arrangements compatible with a given distribution D is 
.G(D) = N ! /N1!N2! . . . , Nl !. Boltzmann (1877) assumed that the energy . ei of 
particle i depends only on the cell in which it is located (and not on interactions 
with other particles), which allows him to express the total energy of the system as a 
sum of single particle energies: .E = ∑l

i=1 Niei . Assuming that the number of cells 
in .
dg is small compared to the number of particles, Boltzmann was able to show 
that .μE(ZDdg

) is maximal if 

.Ni = BeΔei , (10.10) 

where B and . Δ are parameters which depend on N and E. This is the discrete 
Maxwell-Boltzmann distribution, which we refer to as . DMB

Textbooks wisdom has it that the Maxwell-Boltzmann distribution defines the 
equilibrium state of the gas. While not wrong, this is only part of a longer story. 
We have to introduce macro variables and define Z before we can say what the 
system’s macro-regions are, and only once these are defined we can check whether
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the dynamics is such that one of those macro-regions qualifies as the equilibrium 
region. 

Let us begin with macro-variables. The macro-properties of a gas depend only 
on the distribution D. Let  W be a physical variable on the one-particle phase space. 
For simplicity we assume that this variable assumes constant values . wj in cell . ωdg

j

for all .j = 1, . . . , l. Physical observables can then written as averages of the form 
.
∑N

j=1 wjNj (for details see Tolman 1938/1979, Ch. 4). It is obvious that every point 
.x ∈ X is associated with exactly one distribution D, which we call .D(x). Given  
.D(x) one can calculate .

∑N
j=1 wjNj at point x, which assigns every point x a unique 

value. Hence a physical variable W and a distribution .D(x) induce a mapping from 
X to a set of values. Let us call this mapping v, and so we can write: . v : X →
V, where . V is the range of certain physical variable. Choosing different W (with 
different . wj ) will lead to different a different v. These are the macro-variables of 
the kind introduced in Sect. 10.2. A set of values of these variables defines a macro-
state. For the sake of simplicity we now assume that this set of values would be 
different for every distribution so that there is a one-to-one correspondence between 
distributions and macro-states. 

The Maxwell-Boltzmann distribution depends on the total energy of the system: 
different energies lead to different equilibrium distributions. This tells us that 
equilibrium has to be defined with respect to the energy hyper-surface . XE .11 States 
of different energy can never evolve into the same equilibrium and therefore no 
equilibrium state exists with respect to the full state space X. Now the assumption 
that the particles of the dilute gas interact becomes crucial. If the particles did not 
interact, there could be constants of motion other than the total energy and this might 
have the consequence equilibrium would have to be defined on a subsets of . XE (we 
discuss such a case in the next subsection). It is usually assumed that this is not the 
case. The effective state space Z then is . XE , and .(XE,�E,μE, Tt ) is the effective 
measure-preserving dynamical system of the dilute gas, where .�E is the the Borel 
.σ -algebra of . XE and . Tt is the flow of the system restricted to . XE . 

We can now construct the macro-regions . ZM . Above we assumed that there is 
a one to one correspondence between distributions and macro-states. So let .MD be 
the macro state corresponding to distribution D. The macro-region .ZMD

is then just 
the set of all .x ∈ XE that are associated with D: .ZMD

= {x ∈ XE : D(x) = D}. 
A fortiori this also provides a definition of the macro-state .MDMB

associated with 
the Maxwell-Boltzmann distribution .DMB . Let us call the macro-region associated 
with that macro-state .ZMB . It is generally assumed that .ZMB is the largest of all 
macro-states (relative to . μE), and we follow this assumption here.12 

11 Note that this is one of crucial differences between the dilute gas and the oscillator with a colour 
macro-variable of Sect. 10.4: the colour equilibrium does not depend on the system’s energy. 
12 The issue is the  following Eq. (10.10) gives the distribution of largest size relative to the 
Lebesgue measure on the 6N -dimensional shell-like domain .XES specified by the condition that 
.E = ∑l

i=1 Niei . It does not give us the distribution with the largest measure . μE on the . 6N − 1
dimensional . ZE . Strictly speaking nothing about the size of .ZMB (with respect to . μE) follows 
from the combinatorial considerations leading to Eq. (10.10). Yet it is generally assumed that the
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Even if we grant that .ZMB is the largest macro-region (in one of the senses 
of ‘large’), it is not yet clear that .MDMB

is the equilibrium macro-state (in one 
of the senses of ‘equilibrium’). It could be that the dynamics is such that initial 
conditions that lie outside .ZMB avoid .ZMB , or that a significant portion of initial 
conditions lie on trajectories that spend only a short time in .ZMB . To rule out such 
possibilities one has to look at the dynamics of . Tt . Unfortunately the dynamics of 
dilute gases is mathematically not well understood, and there is no rigorous proof 
that the dynamics is ‘benign’ (meaning that it does not have any of the features just 
mentioned). However, there are plausibility arguments for the conclusion that . Tt is 
epsilon-ergodic (Frigg and Werndl, 2011). If these arguments are correct, then the 
dilute gas falls under the Epsilon-Ergodicity-Corollary and .ZMB is an equilibrium 
either of the .α-. ε or the .γ -. ε type, depending on whether .ZMB is .β-dominant or .δ-
prevalent. Moreover, even if the dynamics turned out not to be epsilon-ergodic, it is 
a plausible assumption that the dynamics is such that the conditions of the Existence 
Theorem is fulfilled. 

Hence, the Maxwell-Boltzmann distribution corresponds to equilibrium as 
expected. However, the above discussion shows that this does not come for free: 
we have to accept that .ZMB is large and that . Tt is epsilon-ergodic, and making 
these assumptions plausible the choice of the right effective state space Z is crucial. 
In fact, relative to X no equilibrium exists because there are different equilibria 
for different total energies of the system (as reflected by the Maxwell-Boltzmann 
distribution, which depends on the total energy E). This shows that the triplet of 
macro-variables, dynamics, and effective state space has to be well-adjusted for an 
equilibrium to exists, and that even small changes in one component can destroy 
this balance. 

10.6.2 The Ideal Gas 

Now consider an ideal gas, a system consisting of N particles with mass m and no 
interaction at all. We consider the same partitioning of the phase space as above and 
hence can consider the same distributions and the same macro-variables. One might 
then think that the ideal gas is sufficiently similar to the dilute gas to regard .ZMB as 
the equilibrium state and lay the case to rest. 

This is a mistake. To see why we need to say more about the dynamics of the 
system. An common way to describe the gas mathematically is to assume that the 
particles move on a three three-dimensional torus with constant momenta in each 

proportion of the areas corresponding to different distributions are the same on X and on . XE (or at 
least that the relative ordering is the same). Under that assumption . ZE is indeed the largest macro-
region. We agree with Ehrenfest and Ehrenfest (1959, 30) that this assumption is in need of further 
justification, but grant it for the sake of the argument.
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direction.13 This implies that all one-particle particle momenta . pi (and hence all 
one-particle energies .ei = p2

i /2m) are conserved quantities. As a consequence, 
if an ideal gas starts in a micro-state in which the momenta of the particles are 
not distributed according to the Maxwell-Boltzmann distribution, they will never 
reach that distribution. In fact the initial distribution is preserved no matter what 
that distribution is. For this reason .ZMB is not the equilibrium state and the 
Maxwell-Boltzmann distribution does not characterise the equilibrium state. So the 
combinatorial argument does not provide the correct equilibrium state for an ideal 
gas, and . ZE is not the effective state space. 

This, however, does not imply that the ideal gas has no equilibrium at all. 
Intuitively speaking, there is a .γ -.ε-equilibrium, namely the one where all particles 
are uniformly distributed. To make this more explicit let us separate the distribution 
D into the position distribution .Dx and the momentum .Dp (which is a trivial 
decomposition which can always be done): .D = (Dx , . Dp). Under the dynamics 
of the ideal gas .Dp will not change over time and hence remain in whatever 
initial distribution the gas is prepared. By contrast, the position distribution . Dx

will approach an even distribution . De as time goes on. So we can say that the 
equilibrium distribution of the system is .Deq = (De, . Dp), where .Dp is the gas’ 
initial distribution. The relevant space with respect to which an equilibrium exists 
is the hyper-surface . Zp, i.e. the hyper-surfaface defined by the condition that the 
moment are distributed according to . Dp. The relevant dynamical system then is 
.(Zp,�Zp, μp, Tt ), where .�Zp is the Borel-.σ -algebra, . μp is the uniform measure 
on . Zp and the dynamics . Tt is simply the dynamics of the ideal gas restricted to . Zp. 

It is easy to see that with respect to .Zp the region corresponding to . De is 
the largest macro-region. The motion on . Zp is ergodic for almost all momentum 
coordinates.14 Thus, by the Ergodicity-Corollary, the largest macro-region, i.e. the 
macro-region corresponding to the uniform distribution, is a .γ -.ε-equilibrium. There 
will be some very special momentum coordinates where no equilibrium exists 
relative to . Zp because the motion of the particles is periodic. However, these special 
momentum coordinates are of measure zero and for all other momentum coordinates 
the uniform distribution will correspond to the equilibrium macro-region. Thus this 
example illustrates again the importance of choosing the correct effective phase 
space: the ideal gas has no equilibrium relative to . ΓE but an equilibrium exists 
relative to . Zp.15 

13 One also think of the particles as bouncing back and forth in box. In this case the modulo of the 
momenta is preserved and a similar argument applies. 
14 In terms of the uniform measure on the momentum coordinates. 
15 Another possible treatment of the ideal gas is to consider the different macro-state structure 
given only by the coarse-grained position coordinates (i.e. the momentum coordinates are not 
considered). Then the effective dynamical system would coincide with the full dynamical system 
.(Γ,�Γ ,μΓ , Tt ). Relative to this dynamical system there would be an .γ -0-equilibrium (namely 
the uniform distribution). That is, almost all initial conditions would spend most of the time in the 
macro-state that corresponds to the uniform distribution of the position coordinates.
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10.6.3 The Kac Gas 

The Kac-ring model consists of an even number N of sites distributed equidistantly 
around a circle. On each site there is either a white or black ball. Let us assume 
that .N/2 of the points (forming a set S) between the sites of the balls are marked. 
A specific combination of white and black balls for all sites together with the set S 
is a micro-state k of the system, and the state space K consists of all combinations 
of white and black balls and selection of .N/2 points between the sites and .�K is 
the power set of K . The dynamics . κ of the system is given as follows: during one 
time step each ball moves counterclockwise to the next site; if the ball crosses an 
interval in S, it changes colour and if it does not cross an interval in S, then it does 
not change colour (the set S stays the same at all times). The probability measure 
is the uniform measure . μK on K . .(K,�K,μK, κt ), where . κt is the t-th iterate of . κ

is a measure-preserving deterministic system describing the behaviour of the balls 
(and K is both the full state space X as well as the effective state space Z of the 
system). 

The Kac-ring can be interpreted in several ways. As presented here, the intended 
interpretation is that of a gas: the balls are described by their positions and their 
colour is seen as representing their (discrete) velocity. Whenever a ball passes a 
marked site its colour changes, which is analogous to a change in velocity of a 
molecule that results from collision with another molecule. The equations of motion 
are given by the counterclockwise motion together with the changing of the colours 
(Bricmont 1995; Kac  1959; Thompson 1972). The macro-states usually considered 
are defined by the total number of black and white balls. So the relevant macro-
varible v is a mapping .K → V, where .V = {0, . . . , N}. Each value in . V defines 
a different macro-state. Traditionally these states are labelled .MK

i , where i denotes 
the total number of white balls, .0 ≤ i ≤ N . As above, the macro-regions . Ki are 
defined as the set of micro-states on which .MK

i supervenes. It can be shown that the 
macro-state whose macro-region is of largest size is .MK

N/2, i.e. the state in which 
half of the spins are up and half down. 

This example is interesting because it illustrates the case where an equilibrium 
exists even though the phase space is broken up into a finite number of ergodic 
components. More specifically, the motion of the Kac-ring is periodic. Suppose that 
.N/2 is even: then at most after N steps all balls have returned to their original colour 
because each interval has been crossed once and .N/2 is even. If .N/2 is odd, then it 
takes at most 2N steps for the balls to return to their original colour (because after 
2N steps each interval has been crossed twice). So the phase space of the KAC-
ring is decomposed into periodic cycles (together with a specification of S). These 
cycles are the components of the ergodic decomposition that we encounter in the 
Ergodic Decomposition Theorem. The Existence Theorem is satisfied and hence 
a .γ -.ε-equilibrium exists because on each of these ergodic components, except for 
components of measures . ε, the equilibrium macro-state .MK

N/2 takes up the largest 
measure, i.e. Eq. (10.6) is satisfied. Note that there are initial states that do not show 
equilibrium-like behaviour (that is, the set of initial conditions that do not show
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an approach to equilibrium is of positive measure . ε). For instance, start with all 
balls being white and let every interval belong to S. Then, clearly, after one step 
the balls are all black, then after one step they are all white, and so on there is no 
approach equilibrium (Bricmont 2001; Kac  1959; Thompson 1972). The Existence 
Theorem is satisfied and hence a .γ -.ε-equilibrium exists because on each of these 
ergodic components, except for components of measures . ε, the equilibrium macro-
state . MK

N/2

10.6.4 Gas of Noninteracting Particles in a Stadium-Box 

Let us now turn to lesser-known examples of gas systems that illustrate the various 
cases of the Existence Theorem. The first example illustrates the easiest way to 
satisfy the existence theorem, namely having an ergodic dynamics and a macro-
region of largest measure. Consider a stadium-shaped box S (i.e. a rectangle capped 
by semicircles). Suppose that N particles are moving with uniform speed16 inside 
the stadium-shaped box, where the collisions with the walls are assumed to be 
elastic and it is further assumed that the particles do not interact. The set of all 
possible states of the system consists of the points . Y = (y1, w1, y2, w2 . . . , yN ,wN)

satisfying the constraints .yi ∈ S and .||wi || = 1, where . yi and . wi are the position 
and velocity coordinates of the particles respectively .(1 ≤ i ≤ N). .�Y is the 
Borel .σ -algebra of Y . The dynamics . Rt of the system is the motion resulting from 
particles bouncing off the wall elastically (whithout interacting with each other). 
The uniform measure . ν is the invariant measure of the system. .(Y,�Y , ν, Rt ) is 
a measure-preserving dynamical system and it can be proven that the system is 
ergodic (cf. Bunimovich 1979).17 Y is both the full state space X and the effective 
state space Z of the system. 

Now divide the stadium-shaped box into cells .ωS
1 , ωS

2 , . . . , ωS
l of equal measure 

. δS (.l ∈ N). As in the case of the dilute gas, consider distributions . D = (N1, . . . , Nl)

and associate macro-states with these distributions. Macro-variables are also defined 
as above. It is then obvious that the macrostate .(N/l,N/l, . . . , N/l) corresponds 
to the macro-region of largest measure.18 Since the dynamics is ergodic, it follows 
from the Ergodicity-Corollary that the system has a .γ -.ε-equilibrium (where .ε = 0). 
More specifically, except for a set of measure zero, for all initial states of the N 
billiard balls the system will approach equilibrium and stay there most of the time.

16 Speed, unlike velocity, is not directional and does not change when particle bounces off the wall. 
17 Bunimovich’s (1979) results are about one particle moving in a stadium-shaped box, but they 
immediately imply the results stated here about n non-interacting particles. 
18 It is assumed here that N is a multiple of l. 
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Fig. 10.5 The 
mushroom-shaped box 

10.6.5 Gas of Noninteracting Particles in a Mushroom-Box 

The next example illustrates the role of the .ε-set of initial conditions that are not 
required to show equilibrium-like behaviour in the Definition of a .γ -.ε-equilibrium. 
For most conservative systems the phase space is expected to consist of regions of 
chaotic or ergodic behaviour next to regions of regular and integrable behaviour. 
These mixed systems are notoriously difficult to study analytically as well as 
numerically (Porter and Lansel, 2006). So it was a considerable breakthrough when 
Bunimovich (2002) introduced a class of billiard systems that can easily be shown 
to have mixed behaviour. 

Consider a mushroom-shaped box (the domain M obtained by placing an ellipse 
on top of a rectangle as shown in Fig. 10.5), consisting of the stem St and the 
cap Ca. Suppose that N gas particles are moving with uniform speed inside the 
mushroom-shaped box. The collisions on the wall are again assumed to be elastic 
and, for sake of simplicity, we assume that the particles do not interact. Then the set 
of all possible states consists of the points .D = (d1, v1, d2, v2 . . . , dn, vn), where 
.di ∈ M and .||vi || = 1 are the position and velocity coordinates of the particles 
respectively .(1 ≤ i ≤ N). .�D is the Borel .σ -algebra of D. The dynamics . Ut of 
the system is the motion of the particles generated by elastic collisions with the 
boundaries of the mushroom. The phase volume u is preserved under the dynamics. 
.(M,�M,Ut , u) is a measure-preserving dynamical system (and M is both the full 
state space X and the effective state space Z of the system). 

It can be proven that the phase space consist of two regions: an ergodic region 
and a region with regular or mixed behaviour (i.e. integrable parts are intertwined 
with chaotic parts). As the stem is shifted to the left, the volume of phase space 
occupied by the ergodic motion continually increases and finally reaching measure 
1 when the stem reaches the edge of the cap.19 Assume now that the stem be so far 
to the left that the measure of the ergodic region is .1−ε, in which case the system is 
.ε-ergodic (cf. Sect. 10.5). Suppose that the macro-states of interest are distributions 
.D = (NSt , NCa), where .NSt and .NCa are the particle numbers in the stem and

19 The results in Bunimovich (2002) are all about one particle moving inside a mushroom-shaped 
box, but they immediately imply the results about a system of n non-interacting particles stated 
here. 
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Fig. 10.6 The 
multi-mushroom-shaped box 

cap respectively. We now assume that that the measure of the stem is the same 
as the measure of the cap. It then follows from the Epsilon-Ergodicity Corollary 
that the system has a .γ -. ε equilibrium, namely .(N/2, N/2) (cf. Bunimovich 2002; 
Porter and Lansel 2006). This example is of special interest because it is proven 
that there is a set of initial states of the billiard balls of positive measure that do not 
show equilibrium-like behaviour. That is, for these initial states the system does not 
evolve in such a way that most of the time half of the particles are in the stem and 
half of the ball are in the cap (as is allowed by the definition of an .γ -.ε-equilibrium). 

10.6.6 Gas of Noninteracting Particles in a 
Multi-Mushroom-Box 

In our next and last example the Existence Theorem is satisfied because there are a 
finite number of ergodic components on each of which the equilibrium macro-state 
takes up the largest measure. Consider a box created by several mushrooms such 
as the one shown in Fig. 10.6 (the domain T M  is constructed from three elliptic 
mushrooms, where the semi-ellipses have foci . P1 and . P2, . P3 and . P4, . P5 and . P6). 

Suppose again that N gas particles are moving with uniform speed inside 
the box MM , that the collisions on the wall are elastic and that the particles 
do not interact. The set of all possible states consists of the points . W =
(w1, u1, w2, u2 . . . , wn, un), where .wi ∈ MM and .||ui || = 1 are the position and 
velocity coordinates of the particles respectively .(1 ≤ i ≤ N). .�W is the Borel 
.σ -algebra on W . The dynamics . Vt of the system is given by the motion of the 
noninteracting particles inside the box, and the phase volume v is preserved under 
the dynamics. .(W,�W , v, Vt ) is a measure-preserving dynamical system (and W is 
both the full state space X and the effective state space Z of the system).
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Bunimovich (2002) proved that the phase space consist of . 2N larger regions on 
each of which the motion is ergodic and, finally, one region of negligible measure . ε

of regular or mixed behaviour (Bunimovich, 2002).20 The . 2N ergodic components 
arise in the following way: each single particle space has two large ergodic regions: 
one region consisting of those orbits of the particle that move back and forth between 
the semi-ellipses with the foci . P1, . P2 and . P3, . P4 (while never visiting the semi-
ellipse with the foci .P5, P6). The second ergodic region consists of the orbits that 
travel back and forth between the semi-ellipses with the foci . P3, . P4 and . P5, . P6
(while never visiting the semi-ellipse with the foci .P1, P2). Given that the phase 
space of the entire system is just the cross-product of the phase space of the N 
single particle spaces, it follows that there are . 2N ergodic components.21 

Suppose that the macrostates of interest are the distributions .D = (MS,MC), 
where MS is the number of balls in the two stems and MC the number of balls in 
the three caps of the mushroom, where we assume that the measure of the two stems 
taken together is the same as the measure of the three caps taken together.22 Then the 
system has a .γ -. ε equilibrium, corresponding to the case where .N/2 of the particles 
are in the two stems and .N/2 of the particles are in the three caps of the mushrooms 
(cf. Bunimovich 2002; Porter and Lansel 2006). This example is of special interest 
because it illustrates the case where an equilibrium exists even though the phase 
space is broken up into a finite number of ergodic components. More specifically, 
in this case we encounter . 2N ergodic components on each of which the equilibrium 
macro-state takes up the largest measure and hence Eq. (10.6) is satisfied. Since 
these ergodic components taken together have total measure .1−ε and the definition 
of a .γ -.ε-equilibrium allows that there is an . ε set of initial conditions that do not 
show equilibrium-like behaviour, it follows that the Existence Theorem is satisfied. 

10.7 Conclusion 

In this paper we introduced a new definition of Boltzmannian equilibrium and 
presented an existence theorem that characterises the circumstances under which 
a Boltzmannian equilibrium exists. The definition and the theorem are completely 
general in that they make no assumption about the nature of interactions and 
so they provide a characterisation of equilibrium also in the case of strongly 
interacting systems. The approach also ties in smoothly with the Generalised Nagel-
Schaffner model of reduction (Dizadji-Bahmani et al., 2010) and hence serves as a

20 How small . ε is depends on the exact shape of the box of the three elliptic mushrooms (it can be 
made arbitrarily small). 
21 Again, Bunimovich’s (2002) results are all about one particle moving inside a mushroom-shaped 
box, but they immediately imply the results about a system of n non-interacting particles stated 
here. 
22 This can always be arranged in this way—see Bunimovich (2002). 
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starting point for discussions about the reduction of thermodynamics to statistical 
mechanics. 

The framework raises a number of questions for future research. First, our 
discussion is couched in terms of deterministic dynamical systems. In a recent paper 
(Werndl and Frigg, 2017a) we generalise the definition of equilibrium to stochastic 
systems. To date there is, however, no such generalisation of the Existence Theorem. 
The reason for this is that this theorem is based on the ergodic decomposition 
theorem, which has no straightforward stochastic analogue. So it remains an open 
question how circumstances under which an equilibrium exists in stochastic systems 
should be characterised. 

Second, macro-variables raise a number of interesting issues. An important 
question is: how exactly do the macro-variables look like for the variety of physical 
systems discussed in statistical mechanics? It has been pointed out to us23 that for 
intensive variables the exact definition is complicated and can only be done by 
referring to extensive quantities. A further issue is that many quantities of interest 
are local quantities, at least as long as the system is not in equilibrium (pressure 
and temperature are cases in point). Such quantities have to be described as fields, 
which requires an extension of the definition of a macro-state in Sect. 10.2. Rather 
than associating equilibrium only with a certain value (or a range of values), one 
now also has to take field properties such as homogeneity into account. We address 
some of these questions in our other contribution to this book (Chap. 11), but the 
issue deserves further attention. 

Finally, there is a question about how to extend our notion of equilibrium to 
quantum systems. Noting in our definition of equilibrium depends on the underlying 
dynamics being classical or the variables being defined on a classical space phase 
space rather than a Hilbert space, and so we think that there are no in-principle 
obstacles to carrying over our definition of equilibrium to quantum mechanics. But 
the proof of the pudding is in the eating and so the challenge is to give an explicit 
quantum mechanical formulation of Boltzmannian equilibrium. 
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