
Chapter 4
Ehrenfest and Ehrenfest-Afanassjewa on
Why Boltzmannian and Gibbsian
Calculations Agree

Charlotte Werndl and Roman Frigg

4.1 Introduction

The relation between the Boltzmannian and the Gibbsian formulations of statisti-
cal mechanics (SM) is one of the major conceptual issues in the foundations of the
discipline. In their celebrated review of SM, Paul Ehrenfest and Tatiana Ehrenfest-
Afanassjewa discuss this issue and offer an argument for the conclusion that Boltz-
mannian equilibrium values agree with Gibbsian phase averages.1 In this paper, we
analyse their argument, which is still important today, and point out that its scope is
limited to dilute gases.

1The original paper was published in German under the title ‘Begriffiche Grundlagen der Statistis-
chen Auffassung in der Mechanik’ in 1911. Throughout this paper, we quote the English translation
that came out in 1959 under the title ‘The conceptual foundations of the statistical approach in
mechanics’.
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4.2 Boltzmannian and Gibbsian Statistical Mechanics

In statistical mechanics (SM) there are two main theoretical frameworks, namely
Boltzmannian and Gibbsian SM.2 Consider a system S consisting of the following:
X is the set of all possible states (the state space), μX is the probability measure on
X (that is assumed to be invariant under the dynamics) and Tt (x) is the dynamics
specifying the state of the system after t time steps given that it started in x .3

At the beginning of Boltzmannian SM stands the introduction of macro-states
M j , j = 1, . . . , m, which are characterised by the values of a set of macro-variables
{ f1, . . . , fk} (where both m and k are in N). A macro-variable fi : X → R is a
function that associates a value with each x ∈ X . Capital letters Fi denote the values
of the fi . A macro-state Mi is defined by a particular set of values {F1, . . . , Fk}.
Macro-states are assumed to supervene on micro-states, and hence there corresponds
a micro-region X M j ⊆ X to each M j , which consists of all x ∈ X for which the
macroscopic variables assume the values characteristic for M j . The X Mi together
form a partition of X , meaning that they do not overlap and jointly cover X . One
of the macro-states is then singled out as the equilibrium state, and the equilibrium
values of the fi are the values Fi that the macro-variables assume in the equilibrium
macro-state. The standard line on how to single out the equilibrium state is that
size is the determining factor: the equilibrium state is the state for which μX (X Mi )

assumes the highest value. As we will see in Sect. 4.5, this definition stands in need
of qualification, but since it is widely used, we work with it for now and see how far
it takes us.

The most important method to determine the largest macro-state is Boltzmann
(1877) combinatorial argument, which Ehrenfest and Ehrenfest-Afanassjewa discuss
in detail (1959, 26–30). The argument runs as follows. The state of one particle is
given by a point in the six-dimensional state space X1, and thus the state of the system
(of the N particles) is given by N points in X1. Because the system is confined to a
finite container and the energy is constant, only a certain finite part of X1 is accessible.
This accessible part of X1 is then divided into cells of equal size δω whose dividing
lines run parallel to the position and momentum axes. The result is a finite partition
� := {ω1, . . . ,ωl}, l ∈ N. The cell in which a particle’s state lies is referred to as the
particle’s coarse-grained micro-state. The specification of the coarse-grained micro-
state for all particles is called an arrangement. Finally, a specification of the number
of particles in each cell is referred to as a distribution D = (N1, N2, . . . , Nl) (Ni

is the number of particles in cell ωi ). Each distribution is compatible with several
arrangements, and the number of arrangements corresponding to a given distribution
D is G(D) = N ! / N1!N2! . . . , Nl !.

2We briefly review both frameworks in this section. More extensive presentations can be found
in Frigg (2008) and Uffink’s (2007). See Frigg and Werndl (2019) for a discussion of the Gibbs
formalism in particular.
3In this paper, we mostly follow Ehrenfest and Ehrenfest-Afanassjewa and consider deterministic
systems. In our (2017) we discuss stochastic systems and show that the main results carry over to
the stochastic context. We consider an explicitly stochastic system below in Sect. 4.6.



4 Ehrenfest and Ehrenfest-Afanassjewa on Why Boltzmannian … 87

Ehrenfest and Ehrenfest-Afanassjewa now associate macro-states with distribu-
tions (1959, 49–50): each distribution defines a macro-state. This assumption is
motivated by the fact that the macro-properties of a system are a function of the
micro-properties, and hence a given macro-variable will assume different values for
different distributions (we come back to this assumption below in Sect. 4.4). Clearly,
every micro-state x of X corresponds to exactly one distribution D(x). The macro-
region X D is then simply defined as the set of all x that are associated with the
macro-state D.

The equilibrium macro-region is the region X D with the largest measure. To
determine this largest macro-region, Boltzmann (1877) provided a classical argu-
ment, which Ehrenfest and Ehrenfest-Afanassjewa discuss in detail (1959, 27–31).
Boltzmann assumed that the energy ei of particle i is only dependent on the cell
in which it is located (and not on the location of the other particles), implying that
the total energy of the system is E = ∑l

i=1 Ni ei . With the further assumption that
the number of cells in � is small compared to the number of particles, Boltzmann
showed that μX (X D) has a maximum when

Ni = γeλei , (4.1)

where γ and λ are parameters which depend on N and E . Equation (4.1) is now
known as the discrete Maxwell–Boltzmann distribution. The equilibrium macro-
state, therefore, corresponds to the Maxwell–Boltzmann distribution.

However, as Ehrenfest and Ehrenfest-Afanassjewa rightly emphasise (1959, 30),
there is a last step missing. The X D as defined above are 6N -dimensional, and
Eq. (4.1) gives us is the distribution for the cell of largest size relative to the Lebesgue
measure μX (or more precisely, relative to the 6N -dimensional subset X E S of X
defined by the condition that E = ∑l

i=1 Ni ei ). However, by assumption, the system
has constant energy, and so we know that the system’s motion takes place on the
6N -1-dimensional energy hypersurface X E . Hence, the relevant macro-regions are
ones that lie in X E rather than in X . A quick fix is the following: define the relevant
6N -1-dimensional macro-regions as the intersection of the 6N -dimensional X D with
X E , and use the restriction μE , the restriction of μX to X E , to measure their size.

Ehrenfest and Ehrenfest-Afanassjewa are careful to point out that this is not
enough to give us what is needed, namely the macro-region of largest size rela-
tive to the measure μX E on the 6N − 1-dimensional set X E . Standard presentations
of the combinatorial argument simply assume that the possible distributions and
the proportion of the different distributions would not change if macro-states were
instead defined on X E , which yields the desired result that the equilibrium region is
the largest region on X E . Ehrenfest and Ehrenfest-Afanassjewa (1959, 30) are more
careful. While they also adopt this assumption, they stress that it is in need of further
justification.

So the conclusion Ehrenfest and Ehrenfest-Afanassjewa arrive at is that in the
Boltzmannnian framework the observed value in equilibrium for the observable f
is the value of f in the macro-region corresponding to the Maxwell–Boltzmann
distribution.
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Gibbsian SM studies ensembles, infinite collections of independent systems that
are all governed by the same equations but start in different initial states. Formally,
an ensemble is a probability density ρ(x, t), x ∈ X , describing the probability of
finding the state of a system chosen at random from the ensemble in a certain region
of X at time t .

Given an ensemble ρ, the Gibbs entropy is

SG[ρ] = −kB

∫

X
ρ(x, t) log[ρ(x, t)]dx, (4.2)

where kB is the Boltzmann constant. An ensemble ρ(x, t) is called stationary if
and only if it does not depend on time, i.e. ρ(x, t) = ρ(x) for all t . In Gibbsian
SM equilibrium is a property of an ensemble. More specifically, the ensemble is in
equilibrium if and only if it is stationary, and sometimes it is also required that it
has maximum Gibbs entropy given the constraints imposed on the system. The most
common constraints give rise to the microcanonical, canonical and grand-canonical
distributions (1959, 46–47).

As in Boltzmannian SM, physical observables correspond to a set of real-valued
functions fi , and the phase average of such a function in equilibrium is defined as

〈 fi 〉 =
∫

X
fi (x)ρ(x)dx . (4.3)

According to the canonical understanding of Gibbsian SM, what is observed in
experiments on systems in equilibrium are such phase averages (1959, 47 and 49).
There is, however, a question about the scope of this claim: according to Gibbsian
SM, does one always observe phase averages or are phase averages only observed in
certain situations? The answer to this question is a matter of dispute which depends
on how exactly Gibbsian SM is interpreted (for a discussion see Frigg and Werndl
2019). It is not entirely clear what reading of Gibbsian SM Ehrenfest and Ehrenfest-
Afanassjewa endorse (though it seems to us that they rather endorse the claim and
that, according to Gibbsian SM, always phase averages are observed). Fortunately,
this issue does not matter in what follows.

Now, we are in a curious situation. Two different frameworks make predictions
for the same experimental values. The Boltzmannian account says that the observed
equilibrium value for the observable fi is the value that it assumes in the macro-
region corresponding to the Maxwell–Boltzmann distribution, while the Gibbsian
account says that that the equilibrium value is 〈 fi 〉. Do these values coincide? If so,
why? If not, which of the values, if any, is correct?
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4.3 Ehrenfest and Ehrenfest-Afanassjewa on Gibbs Versus
Boltzmann

Ehrenfest and Ehrenfest-Afanassjewa opt for the first solution and set out to show
that Boltzmannian equilibrium values and Gibbsian phase averages coincide. Their
argument is an important one, and similar points have been made more recently by
Davey (2009), Myrvold (2016). They begin by discussing the Gibbsian treatment
of the gas with the observable f .4 According to the Gibbsian framework, what is
observed in equilibrium is the phase average. Because energy is conserved, it would
be natural to consider the phase average relative to the micro-canonical ensemble
(because this is the stationary distribution of maximum Gibbsian entropy under the
constraint of constant energy).However, Ehrenfest andEhrenfest-Afanassjewadonot
do this and instead consider the phase averagewith respect to the canonical ensemble.
The canonical ensemble is the stationary distribution of maximum entropy when the
energy is allowed to vary:

ρc(q, p) = e
�−E(q,p)

� , (4.4)

where E(q, p) is the total energy, � is an constant, and � is determined by the
constraint that

∫
X ρc(q, p) = 1.

The reason why they consider the phase average with respect to the canonical
ensemble is unclear. A possible motivation might be that they want to show that it
does not matter which distribution is chosen: Gibbsian SM leads to the same result
as Boltzmannian SM regardless of whether one works with the microcanonical or
the canonical ensemble.

As a first step they appeal to the well-known result, often referred to as the equiv-
alence between the microcanonical and canonical distributions that holds when the
number of particles of a gas is extremely large:

In an ensemble which is canonically distributed with the modulus � = �0, an overwhelm-
ing majority of individuals will have nearly the same total energy E = E0 (Ehrenfest and
Ehrenfest-Afanassjewa 1959, 48).

(Here �0 is the fixed value of � in Eq. (4.4) of the canonical distribution above and
E0 is the energy value that nearly all individuals will have for the fixed value �0).

Based on this result Ehrenfest and Ehrenfest-Afanassjewa (1959, 48–49) argue
that it is plausible that

∫
X f (x)dρc, the phase average with respect to the canonical

distribution ρc on X , is approximately equal to
∫

X E
f (x)dρm , the phase average with

respect to the microcanonical distribution ρm on X E (when f is restricted to X E ).
The next step is the vital move in the argument. Recall that the combinatorial argu-

ment shows that the equilibrium macro-region is the largest macro-region. So the
macro-value corresponding to the Maxwell–Boltzmann distribution is the macro-
value that is taken by more microstates than any other macro-value on X E .5 It is

4For ease of notation, we suppress the subscript ‘i’ from now.
5Strictly speaking, this is true only under an additional assumption that we discuss in the next
section.
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crucial to be clear on the sense of ‘large’ that is being used here. What the combina-
torial argument shows is that the equilibrium macro-region is larger than any other
macro-region. It does not show that the equilibriummacro-region is large in an abso-
lute sense, i.e. that it occupies the largest part of X E . The latter does not follow from
the former. A macro-region can be larger than any other macro-region without being
large relative to X E . Ehrenfest and Ehrenfest-Afanassjewa bridge the gap between a
relative and the absolute sense of ‘large’ by referring to results due to Jeans (1904,
Sects. 46–56), who argues that nearly all states in X E are in the macro-region corre-
sponding to theMaxwell–Boltzmann distribution. Hence, f assumes the equilibrium
value on almost all states in X E . From this, they infer that this value is approximately
equal to the Gibbsian phase average derived in the previous paragraph.

So their conclusion is that in a system inwhich the combinatorial argument applies,
the Boltzmannian equilibrium value and the Gibbsian phase average with respect to
the macro-variable f are approximately the same.

4.4 Assessment of Ehrenfest and Ehrenfest-Afanassjewa’s
Argument

The considerations we make to assess the Ehrenfest and Ehrenfest-Affanassjewa
argument fall into two groups. Considerations in the first group concern the combi-
natorial argument and its limitations; considerations in the second group concern the
identity argument in the last section. We will focus mainly on the second group but
will begin by making a few observations about the first.

As has been pointed out previously,6 a core assumption of the combinatorial
argument, namely that E = ∑l

i=1 Ni ei , is very restrictive. In essence, this assumption
implies that the argument only applies (even in an approximate form) to dilute gases.
So it is unsurprising that Ehrenfest and Ehrenfest-Afanassjewa (1911, 36–60) talk
about gas systems when presenting the combinatorial argument. However, it remains
unclear from the text whether they are clear on the fact that it only applies to dilute
gases.

Second, the conclusion that the macro-value of f in the Maxwell–Boltzmann
distribution is the macro-value that is taken by more micro-states than any other
macro-value on X E follows only under the strong assumption that f assumes a
different value for every macro-region. However, Lavis (2005, 2008) pointed out
that this need not always be the case.7 Macro-regions can show degeneracy in the
sense that f can assume the same value in several regions. It is possible that a
number of such (non-equilibrium) macro-regions taken together are larger than the
equilibrium region, and so f assumes the equilibrium value in a region of the state
space that is smaller than the union of the degenerate macro-regions. Lavis (2005,

6See, for instance, Uffink (2007) and Werndl and Frigg (2015b).
7Lavis (2005, 2008) discussed the case of theBoltzmann entropy, but the point obviously generalises
to phase functions.
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2008) shows that this happens in the case of the baker’s gas, thereby driving home the
point that degeneracies causing difficulties is more than just a theoretical possibility.

Let us set these concerns aside and assume, for the sake of argument, that we
are dealing with a dilute gas and a ‘well-behaved’ function f (we will discuss
what happens if these assumptions fail in Sect. 4.5). Does Ehrenfest and Ehrenfest-
Afanassjewa’s equivalence argument hold under these assumptions? It is obvious that
their argument contains a gap. They conclude from the fact that f assumes the equi-
libriumvalue on nearly all states in X E that the average of f over X E is approximately
equivalent to that value. This, however, is true only if the non-equilibrium values are
not disproportionately far away from the equilibrium value. If the non-equilibrium
values differ significantly from the equilibrium values, their contribution to the aver-
age can be significant and the average need no longer be equal to the equilibrium
value of the function, not even approximately.

To rule out such a scenario one needs to assume that f satisfies some kind of ‘small
fluctuation condition’. The most common condition of this kind is now known as
the Khinchin Condition. The condition plays a crucial role in the work of Khinchin
(1960 [1949]) and variants of it have been appealed to in the foundational literature
on SM, for instance byMalament and Zabell (1980), Myrvold (2016). This condition
requires that the observable f equals the phase average nearly everywhere on phase
space. Formally:

There is a X̄ ⊆ X with μX (X̄) = 1 − δ for a small δ ≥ 0 such that | f (x) − 〈 f (x)〉| ≤ ε for
all x ∈ X̄ and a very small ε ≥ 0.

Under Ehrenfest and Ehrenfest-Afanassjewa’s assumptions the Boltzmannian equi-
librium macro-region satisfies the condition on X̄ . Let Fequ be the value of f in that
macro-region. It then follows that |〈 f (x)〉 − Fequ | ≤ ε, and therefore the Boltzman-
nian value and the Gibbsian average agree, at least approximately.

Ehrenfest and Ehrenfest-Afanassjewa, however, do not appeal to this formulation
of the condition, but to a variant of the Khinchin condition that we call the Ehrenfest-
Afanassjewa Condition. The condition is that the observable f is approximately equal
to the Boltzmannian equilibrium value nearly everywhere on phase space and that
the observable does not take extreme values on the rest of the phase space. Formally,
the Ehrenfest-Afanassjewa Condition can be formulated as follows8:

Consider a system of the kind introduced in Sect. 4.2 endowed with an observable f . Further
assume that the system has a Boltzmannian equilibrium with equilibrium macro-value Fequ .

8A variant of the Ehrenfest-Afanassjewa Condition requires that the observable f is constant nearly
everywhere on phase space and does not take extreme values on the rest of the phase space:

There is an constant C ∈ R and a X̄ ⊆ X with μX (X̄) = 1 − δ (for a small δ ≥ 0) such that
(i) | f (x) − C | ≤ ε for all x ∈ X̄ for a very small ε ≥ 0 and (ii) | ∫X\X̄ f (x)dμX − Cδ)| ≤ γ
(for a very small γ ≥ 0).

Because the Boltzmannian equilibrium macro-value Fequ takes up more than δ of phase space, it
follows that Fequ is very close to C . Therefore, | f (x) − Fequ | ≤ ε1 for a small ε1 ≥ 0 for all x ∈ X̄
and | ∫X\X̄ f (x)dμX − Fequδ)| ≤ γ1 (for a very small γ1 ≥ 0). This is in fact the original Ehrenfest-
Afanassjewa Condition and so the variant is in fact equivalent to the original Ehrenfest-Afanassjewa
Condition.
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Then there is an X̄ ⊆ X with μX (X̄) = 1 − δ (for a small δ ≥ 0) such that (i) | f (x) −
Fequ | ≤ ε for all x ∈ X̄ (for a very small ε ≥ 0) and (ii) | ∫X\X̄ f (x)dμX − Fequδ)| ≤ γ
(for a very small γ ≥ 0).

A simple calculation shows that for systems that satisfy the Ehrenfest-Afanassjewa
Condition with respect to f , the phase average is approximately equal to the Boltz-
mannian equilibrium macro-value Fequ :

|〈 f (x)〉 − Fequ | ≤
|
∫

X̄
f (x)dμX − Fequ(1 − δ)| + |

∫

X\X̄
f (x)dμX − Fequδ| ≤

ε(1 − δ) + γ (because of (i) and (ii) of the Khinchin condition).

It is interesting to discuss both the Khinchin and the Ehrenfest-Afanassjewa con-
ditions because, depending on the context, one or the other may turn out to be more
useful. There is, however, a slight mismatch between the Ehrenfest-Afanassjewa
Condition and the calculations of Ehrenfest and Ehrenfest-Afanassjewa: they per-
formGibbsian phase space averaging with the canonical and not the micro-canonical
distribution. However, because of the equivalence of the micro-canonical andmacro-
canonical ensemble as discussed above this difference does not matter; and if for
some reason it did, one could simply perform the Gibbsian calculations with the
microcanonical ensemble.

It is important to note that neither of the two conditions is in any way trivially
true. Khinchin could prove his condition only for the special case of sum functions
in non-interacting systems (sum functions are functions in many-particle systems
that can be written as a sum over one-particle functions). The generalisation of this
result to the case interacting system is a veritable challenge and no general solution
has been found to date.9

Ehrenfest and Ehrenfest-Afanassjewa argue in their survey that the Ehrenfest-
Afanassjewa condition is satisfied. Their argument is valid but only subject to a
change in one of the assumptions and an additional assumption in their argument.
Namely, first, as outlined above, they assume (by referring to Jeans 1904, Sects. 46–
56) that nearly all states in X E are in themacro-region corresponding to theMaxwell–
Boltzmann distribution. We have seen above that this need not always be the case.
Furthermore, a closer look at Jeans’ text reveals that he does not actually offer a
proof of the claim. What Jeans shows is that the nearly all of phase space X is taken
up by macro-regions with a distribution D very close to the Maxwell–Boltzmann
distribution. Hence the assumption that the macro-region corresponding to the exact
Maxwell–Boltzmann distribution is large in absolute terms has to be given up. For-
tunately, a weaker assumption provides what we need. All that is required for the
argument to go through is that the observable f is such thatmacro-regionswith distri-
bution D very close to the Maxwell–Boltzmann distribution have approximately the

9See Uffink’s (2007, 1020–1028) for a discussion.
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samemacro-value as themacro-regions with theMaxwell–Boltzmann distribution.10

Note that this amounts to conditions imposedon theBoltzmannianmacro-structure f .
With this newassumption in place, Jeans’ (1904, Sects. 46–56) calculations indeed

imply that condition (i) of the Ehrenfest-Afanassjewa Condition is satisfied. Second,
Jeans (1904, Sects. 46–56) shows that the states whose macro-values are not very
close to the Maxwell–Boltzmann distribution take up a tiny fraction of phase space,
i.e. X \ X̄ is extremely small. But what is still needed is the further condition that f
does not take extremely large or extremely low values on X \ X̄ (and this again is a
condition imposed on f ). With this new assumption in place, (ii) of the Ehrenfest-
Afanassjewa condition is satisfied. Hence, we conclude that with the modifications
just outlined the Ehrenfest-Afanassjewa condition is satisfied and the Boltzmannian
equilibrium value and the Gibbsian phase average lead to approximately the same
result.

To sumup, Ehrenfest andEhrenfest-Afanassjewa identify an important casewhere
the Boltzmannian equilibrium values and the Gibbsian phase averages agree. How-
ever, their argument relies on strong assumptions, and while these assumptions are
satisfied for certain observables in the case of dilute gases, the assumptions need
not hold in general. In fact, in the remainder of this paper, we discuss cases that do
not fit Ehrenfest and Ehrenfest-Afanassjewa’s mould. First, there are cases where
the Boltzmannian equilibrium value is different from the Gibbsian phase average.
This shows that it is an important task for foundational debates to find out under
what conditions the Boltzmannian equilibrium value and the Gibbsian phase aver-
age agree or disagree. Examples of disagreement will be discussed in Sect. 6. Second,
there are cases where the Boltzmannian equilibrium value and the Gibbsian phase
averages agree but where the Ehrenfest-Afanassjewa condition is not satisfied. The
Ehrenfest-Afanassjewa condition and the Khinchin condition provide one condition
where there is an agreement (cf. also Werndl and Frigg 2017a; 2017b, 2020).

For instance, consider the Kac ring, consisting of an even number N of sites
distributed equidistantly around a circle. On each site, there is a spin, which can be in
states up (u) or down (d). A micro-state xkr of the Kac ring is a specific combination
of up and down spin for all sites and the full state space Z = K kr consist of all
combinations of up and down spins (i.e. of 2N elements). There are s, 1 ≤ s ≤ N − 1,
spin flippers distributed at some of the midpoints between the spins. The dynamics
rotates the spins one spin site in the clockwise direction every second (or whichever
unit of time one chooses), and when the spins pass through a spin flipper, they change
their direction. The measure that is usually considered is the uniform measure μXkr

on Xkr (Lavis 2008). The macro-states usually considered are the total number
of up spins, conveniently labelled as M K

i , where i denotes the total number of up
spins, 0 ≤ i ≤ N . TheKac-ringwith the standardmacro-state structure is a paradigm
examplewhereBoltzmannian equilibriumvalues andGibbsian phase averages agree.

10Given a certain macro-variable f and an allowable difference between the Gibbsian phase aver-
age and the Boltzmannian equilibrium macro-value, one could precisely quantify what notion of
‘approximately the same macro-value as the Maxwell–Boltzmann distribution’ would be needed
in order for the Khinchin theorem to go through by making use of the calculations in Jeans (1904,
Sects. 46–56).
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However, it is not an instance of the Ehrenfest-Afanassjewa-condition because, as
shown in Lavis (2005, 2008), the equilibrium macro-region corresponding to an
equal number of up and down spins only takes up less than half of state space (the
rest is taken up by macro-states that are macroscopically distinguishable from the
Boltzmannan equilibrium macro-state). Other examples where the Boltzmannian
equilibrium value and the Gibbsian phase average agree but where the Ehrenfest-
Afanassjewa condition the Khinchin condition does not apply include the baker’s gas
with the standard macro-state structure and the ideal gas with the standard macro-
state structure (cf. Werndl and Frigg 2017a; 2017b, 2020). The reason why the
Boltzmannian equilibrium value and the Gbbsian phase average agree in these cases
will be discussed later in Sect. 4.7.

4.5 Beyond Dilute Gases

Aswe have seen above, the combinatorial argument is restricted to dilute gases.Most
systems of interest in SM are not of this kind and so this is a serious restriction. In two
recent papers, we have discussed this problem at length and proposed an alternative
Boltzmannian definition of equilibrium (2015a, 2015b). On this definition, it is not
size but ‘residence time’ that defines equilibrium: themacro-state inwhich the system
spends most of its time is the equilibriummacro-state. More specifically, define L FR

to be the fraction of time a system spends in region R ⊆ X in the long run:

L FR(x) = lim
t→∞

1

t

∫ t

0
1A(Tτ (x))dτ , (4.5)

where 1A(x) is the characteristic function of R: 1A(x) = 1 for x ∈ R and 0 otherwise.
‘Most’ is interpreted as requiring that the system spends more time in equilibrium

than in any other macro-state, leading to the notion of an γ-ε-equilibrium11:

Let γ > 0 and let ε be a very small positive real number, ε < γ. If there is a macro-
state MF∗

1 ,...,F∗
l
satisfying the following condition, then it is the γ-ε-equilibrium state of

S: There exists a set Y ⊆ X such that μX (Y ) ≥ 1 − ε, and all initial states x ∈ Y satisfy
L FX MF∗

1 ,...,F∗
l

(x) ≥ L FX MF1,...,Fl
(x) + γ for all macro-states M �= MF∗

1 ,...,F∗
l

Clearly, the value observed in equilibrium is simply the value associated with the
equilibrium macro-state. Further, it should be mentioned that one can prove that
equilibrium states defined in this way correspond to the largest macro-region in the
sense that their measure is γ − ε larger than any other macro-region (Werndl and

11Alternatively, ‘most’ can also be understood as referring to the fact that the system spends at least
α > 1/2 of its time in equilibrium, leading to the different notion of an α-ε-equilibrium. Nothing
in what follows hinges on which notion of equilibrium is adopted (cf. Werndl and Frigg 2015b and
forthcoming references).
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Frigg 2015b). This provides a notion of equilibrium that is fully general in that it
does not depend on the system’s dynamics and is hence applicable also to strongly
interacting systems like solids and fluids.

4.6 An Example Where Boltzmannian Equilibrium Values
and Gibbsian Phase Averages Differ

In this section, we see that Ehrenfest and Ehrenfest-Afanassjewa’s result fails to gen-
eralise: in strongly interacting systems like solids and fluids the Boltzmannian equi-
librium value and the Gibbsian phase average can differ. The six-vertex model with
energy as the relevant macro-variable will serve as an example of a case where the
Boltzmannian and Gibbsian equilibrium values differ. Consider a two-dimensional
quadratic lattice with N sites on a torus (the choice of a torus ensures that every grid
point has exactly four nearest neighbours, thus allowing to neglect border effects).
Each site is connected to its four nearest neighbours by edges. Each edge carries
an arrow that either points towards or away from the site. The so-called ‘ice-rule’
restricts the allowable arrangements of the arrows: the arrows have to be distributed
in a way such that at each site in the lattice there are exactly two inward and two out-
ward pointing arrows. It is easy to see that there are exactly six configurations of the
arrows that satisfy the ice-rule, and they are shown in Fig. 4.1. The name ‘six-vertex
model’ is motivated by the existence of these six configurations.

The reason for the name ‘ice-rule’ is that in frozen water each oxygen atom is
connected to four other oxygen atoms. So the sites can be thought of as representing
oxygen atoms and the edges as representing their bonds. For each bond, there is a
hydrogen atom that does not sit in the middle between the two oxygen atoms but
instead occupies a position closer to one of the oxygen atoms. Thus, the arrows
can be interpreted as indicating to which oxygen atom the hydrogen atom is closer.
The ice-rule then corresponds to the requirement that each oxygen atom has two
close and two remote hydrogen atoms. Not only water ice but also several crystals,
in particular potassium dihydrogen phosphate, satisfy the ice-rule (cf. Baxter 1982;
Lavis and Bell 1999; Slater 1941).

The micro-states of the six-vertex model ξ = (ξ1, . . . , ξN ) are given by assigning
one of the six types of configurations of the arrows permitted by the ice rule to each
site in the model. Each of the six configurations has a certain energy ε j , 1 ≤ j ≤ 6.

Fig. 4.1 The configurations of the six-vertex model
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Denote by ε(ξ j ) the energy of the j th configuration. Then the energy of the state ξ
is given by:

E(ξ) =
N∑

i=1

ε(ξi ). (4.6)

We now assume that the energy of the different configurations is ε1 = ε2 = 0 and
ε3 = ε4 = ε5 = ε6 = 1. The probability of the micro-states is given by the canonical
distribution p(ξ)= e−E(ξ)/kT /Z , with Z = ∑

ξ e−E(ξ)/kT . Note that this is merely the
probability measure over the micro-states, and is per se neither Boltzmannian nor
Gibbsian. For the six-vertex model, one usually works with a stochastic dynamics.
More specifically, the underlying dynamics is assumed to be an irreducible Markov
chain (Baxter 1982; Lavis and Bell 1999; Werndl and Frigg 2020). The probability
p(ξ) is then invariant under theMarkov dynamics and is thus a stationary probability
measure.

We now study the six-vertex model with the internal energy E as defined in
Eq. (4.6) as the relevant macro-variable for low temperatures. The lowest energy
value is E = 0, which defines a macro-state M0 with macro-region X M0 = {ξ∗, ξ+}
(here ξ∗ is the state where all vertices are in the first configuration, and ξ+ is the
state where all vertices are in the second configuration). Note that the lower the
temperature, the larger the probability of the lower energy states; and the higher
the temperature, the more uniform the probability measure. Hence for sufficiently
low temperatures, the probability mass is concentrated on low-energy states. For
this reason, X M0 is the largest macro-region. Because the dynamics is an irreducible
Markov chain, the model spends most of its time in M0. It follows that M0 is the
Boltzmannian equilibrium state and E = 0 is the Boltzmannian equilibrium value
(cf. Werndl and Frigg 2020).

Let us now turn to the Gibbsian treatment. Here, p(ξ) is the stationary measure
of maximum entropy, and E is observable. E will assume its lowest value E = 0
only for two specific micro-states, namely ξ∗ and ξ+. For all other states (and they
all have positive probability), the value of E will be higher. From this, we conclude
that the Gibbsian phase average 〈E〉 is greater than zero and hence higher than the
Boltzmannian equilibrium value. Thus, the Boltzmannian equilibrium value and the
Gibbsian phase average differ.

Now, of course, the question is whether this difference can be significant. To see
that this can be so, choose a T such that {ξ∗, ξ+} is still the largest macro-region
but that the probability of this macro-region is equal or less than 0.5.12 Clearly, the
Boltzmannian equilibrium value is still E = 0. Yet the second lowest macro-value
is E = √

N , which is the energy corresponding to micro-states where all columns
of the lattice except one are taken up by states which are in the first or the second
configuration, and the states in the exceptional row are all states in the third or

12Aswe have seen, for sufficiently low temperatures {ξ∗, ξ+} is the largestmacro-region. The higher
the temperature, the more uniform is the probability measure. Hence, for sufficiently high tempera-
tures, the largestmacro-regionwill differ from {ξ∗, ξ+}. Because the canonical distribution is contin-
uous in T , there exists a T such that {ξ∗, ξ+} is the largest macro-region but its probability is≤ 0.5.
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fourth configuration.13 It follows that 〈E〉 is higher than √
N/2. Consequently, the

Gibbsian phase average and the Boltzmannian equilibrium value will differ by more
than

√
N/2, which is not a difference that is negligible (especially when N is large).

Note also that the Boltzmannian macro-value that is closest to the value obtained
fromGibbsian phase space averaging is larger or equal to

√
N . But this Boltzmannian

macro-value is different from the Boltzmannian equilibrium macro-value, which is
zero. This again underlines that Gibbsian phase space averaging results in a different
outcome than the Boltzmannian calculations.14

4.7 When Boltzmann and Gibbs Agree

Boltzmannian equilibrium values and Gibbsian phase averages can come apart.
This raises the question under what conditions the two coincide. We have already
seen in Sect. 4.4 that one situation where there is agreement is when the Ehrenfest-
Afanassjewa condition is satisfied. However, as already noted then, there are impor-
tant cases including the baker’s gas with the standard macro-state structure, the
KAC-ring with the standard macro-state structure and the ideal gas with the stan-
dard macro-state structure, that do not, in general, satisfy the Ehrenfest-Afanassjewa
condition or the Khinchin condition.

In our (2017b, 2020) we present another set of conditions under which the Boltz-
mannian equilibrium value and the Gibbsian phase average coincide. Intuitively
speaking, the conditions are: (i) the measure on phase space is the product mea-
sure of the one-constituent space; (ii) the macro-variable considered is the sum of
a one-constituent observable; and (iii) this one-constituent observable takes finitely
many values with the same probability. With these conditions in place, the aver-
age equivalence theorem then shows that, if a Boltzmannian equilibrium exists, the
Boltzmannian equilibrium value and the Gibbsian phase average coincide:

Average Equivalence Theorem (AET). Suppose that a system with phase space X , dynam-
ics Tt and measure μX is composed of N ≥ 1 constituents. That is, the state x ∈ X is
given by the N coordinates x = (x1, . . . , xN ); X = X1 × X2 . . . × X N , where Xi = Xoc
for all i , 1 ≤ i ≤ N (Xoc is the one-constituent space). Let μX be the product measure
μX1 × μX2 . . . × μX N , whereμXi = μXoc is themeasure on Xoc. Suppose that an observable
κ is defined on the one-particle space Xoc and takes the values κ1, . . . ,κk with equal prob-
ability 1/k, k ≤ N .15 Suppose that the macro-variable K is the sum of the one-component
observable, i.e. K (x) = ∑N

i=1 κ(xi ). Then the value corresponding to the largest macro-
region as well as the value obtained by phase space averaging is N

k (κ1 + κ2 + . . .κN ).

13Such micro-state corresponds to the smallest possible departure from the macro-state with zero
energy because the number of downward pointing arrows is the same for all rows. From this, then
follows that there has to be a perturbation in each row and that

√
N has to be the second lowest

value of the internal energy (Lavis and Bell 1999).
14Further examples where the Gibbsian phase average and the Boltzmannian equilibrium value
come apart can be found in our (2017b and 2020).
15It is assumed that N ia a multiple of k, i.e. N = k ∗ s for some s ∈ N.
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This theorem applies to the KAC-ring and the other examples (baker’s system, ideal
gas)mentioned above as caseswhere theBoltzmannian equilibriumvalue agreeswith
the Gibbsian phase average but where the Ehrenfest-Afanassjewa condition does not
apply. Hence, it explains in these cases why the Boltzmannian equilibrium value and
the Gibbsian phase average coincide. As it should be, the theorem does not apply to
the six vertex model with the energy macro-variable because conditions (i) and (iii)
are not satisfied (the measure is not the product measure of the one-constituent space,
and the macro-variable considered is not the sum of a one-constituent observable,
taking values with equal probability).

Note that the conditions of the Average Equivalence Theorem are not necessary
for Boltzmannian equilibrium values and Gibbsian phase averages to coincide. In
particular, that the macro-variable is a sum of the variables on the one-component
space, that themacro-variable on the one-component space corresponds to a partition
into cells of equal probability, or that themeasure on state space is the productmeasure
of the measure on the one-component space are strong conditions that are often not
satisfied. This is illustrated by our example of the dilute gas with the macro-variables
we discussed above. As we have seen, this example is an instance of the Ehrenfest-
Afanassjewa condition. However, it is not an instance of the AET. More specifically,
it is not the case that all sums of possible values of the one-component variable are
possible values of the macro-variable f (because of the requirement that the total
energy is constant, only certain sums of values of the one-component variable are
possible macro-values). Hence the condition that the macro-variable K is the sum of
the one-component variable where all sums of possible values of the one-component
variable are possible values of the macro-variable is violated.

To conclude, the Ehrenfest-Afanassjewa condition instead and the Khinchin con-
dition and the conditions of the AET provide sufficient but not necessary conditions.
So they just identify two cases where the Boltzmannian equilibrium values andGibb-
sian phase averages agree. We suspect that there will be other conditions where the
Boltzmannian equilibrium values and Gibbsian phase averages agree.

4.8 Conclusion

We have considered Ehrenfest and Ehrenfest-Afanassjewa’s argument for the con-
clusion that Boltzmannian equilibrium values and Gibbsian phase averages agree.
We pointed out that their argument is true only under special circumstances. This
is not a shortcoming of their proof but an inherent limitation of the claim: it is not
generally the case that Boltzmannian equilibrium values and Gibbsian phase aver-
ages agree. We discussed the example of the six-vertex model and showed that in
that model the two values come apart. We then offered a general theorem providing
conditions for the equivalence of Boltzmannian equilibrium values and Gibbsian
phase averages. The conditions of the theorem are sufficient but not necessary. This
raises the important question under what other conditions Boltzmannian equilibrium
values and Gibbsian phase averages agree.



4 Ehrenfest and Ehrenfest-Afanassjewa on Why Boltzmannian … 99

References

Baxter, R. J. (1982). Exactly solved models in statistical mechanics. London: Academic Press.
Boltzmann, L. (1877). Über die Beziehung zwischen dem zweiten Hauptsatze der mecha-
nischenWärmetheorie undderWahrscheinlichkeitsrechnung resp. denSätzenüber dasWärmegle-
ichgewicht. Wiener Berichte, 76, 373–435.

Davey, K. (2009). What is Gibbs’s canonical distribution? Philosophy of Science, 76, 970–983.
Ehrenfest, P., & Ehrenfest-Afanassjewa, T. (1959). The conceptual foundations of the statistical

approach in mechanics. Ithaca, N.Y.: Cornell University Press.
Frigg, R. (2008). A field guide to recent work on the foundations of statistical mechanics. In D.
Rickles (Ed.), The ashgate companion to contemporary philosophy of physics (pp. 99–196).
London: Ashgate.

Frigg, R., & Werndl, C. (2019). Can somebody please say what Gibbsian statistical mechanics
says? The British Journal for the Philosophy of Science, online first, https://doi.org/10.1093/
bjps/axy057.

Jeans, J. H. (1904). The dynamical theory of gases. Cambridge: Cambridge University Press.
Khinchin, A. I. (1960) [1949]. Mathematical foundations of statistical mechanics. Mineola/NY:
Dover Publications.

Lavis, D. (2005). Boltzmann and Gibbs: An attempted reconciliation. Studies in History and Phi-
losophy of Modern Physics, 36, 245–73.

Lavis, D. (2008). Boltzmann, Gibbs and the concept of equilibrium. Philosophy of Science, 75,
682–96.

Lavis, D., & Bell, G. M. (1999). Statistical mechanics of lattice systems, Volume 1: Closed form
and exact solutions. Berlin and Heidelberg: Springer.

Malament, D., & Zabell, S. L. (1980). Why Gibbs phase averages work. Philosophy of Science 47,
339–49.

Myrvold, W. C. (2016). Probabilities in statistical mechanics. In C. Hitchcock & A. Hájek (Eds.),
The Oxford handbook of probability and philosophy (pp. 573–600). Oxford: Oxford University
Press.

Slater, J. C. (1941). Theory of the transition in KH2PO4. Journal of Chemical Physics, 9, 16–33.
Uffink, J. (2007). Compendium of the foundations of classical statistical physics. In J. Butterfield
& J. Earman (Eds.), Philosophy of physics (pp. 923–1047). Amsterdam: North Holland.

Werndl, C., & Frigg, R. (2015a). Rethinking Boltzmannian equilibrium. Philosophy of Science, 82,
1224–35.

Werndl, C., & Frigg, R. (2015b). Reconceptionalising equilibrium in Boltzmannian statistical
mechanics. Studies in History and Philosophy of Modern Physics, 49, 19–31.

Werndl, C., & Frigg, R. (2017a). Boltzmannian equilibrium in stochastic systems. In M. Michela
& R. Jan-Willem (Eds.), Proceedings of the EPSA15 conference (pp. 243–254). Berlin and New
York: Springer.

Werndl, C., & Frigg, R. (2017b). Mind the gap: Boltzmannian versus Gibbsian equilibrium. Phi-
losophy of Science, 84, 1289–1302.

Werndl, C., & Frigg, R. Forthcoming. When does a Boltzmannian equilibrium exist?. In D. Bed-
ingham, O. Maroney, C. Timpson (Eds.), Quantum foundations of statistical mechanics. Oxford:
Oxford University Press.

Werndl, C., & Frigg, R. (2020). When do Gibbsian phase averages and Boltzmannian equilib-
rium values agree? Studies in History and Philosophy of Modern Physics, DOI:https://www.
sciencedirect.com/science/article/abs/pii/S1355219820300903.

https://doi.org/10.1093/bjps/axy057
https://doi.org/10.1093/bjps/axy057
https://www.sciencedirect.com/science/article/abs/pii/S1355219820300903
https://www.sciencedirect.com/science/article/abs/pii/S1355219820300903



