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Summary 

 

Thermodynamics describes a large class of phenomena we observe in macroscopic systems. The 

aim of statistical mechanics is to account for this behaviour in terms of the dynamical laws 

governing the microscopic constituents of macroscopic systems and probabilistic assumptions. This 

article provides a survey of the discussion about the foundation of statistical mechanics by 

introducing the basic approaches and discussing their merits as well as their problems. After a brief 

review of classical mechanics, which provides the background against which statistical mechanics 

is formulated, we discuss the two main theoretical approaches to statistical mechanics, one of which 

can be associated with Boltzmann and the other with Gibbs. We end with a discussion of remaining 

issues and open questions.  
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1. Introduction  

 

Let us begin with a characteristic example. Consider a gas that is confined to the left half of a box. 

Now we remove the barrier separating the two halves of the box. As a result, the gas quickly 

disperses, and it continues to do so until it homogeneously fills the entire box. This is illustrated in 

Figure 1. 

 

 

 

The gas has approached equilibrium. This process has one important feature: it is unidirectional. 

We see the gas spread – I.e. we see it evolve towards equilibrium – but we never observe gases 

spontaneously reverting to the left half of a box – i.e. we never see them move away from 

equilibrium when left alone. And this is not a specific feature of our gas. We see ice cubes melting, 

coffee getting cold when left alone, and milk mix with tea; but we never observe the opposite 

happening. Ice cubes don't suddenly emerge from lukewarm water, cold coffee doesn't 

spontaneously heat up, and white tea doesn't un-mix, leaving a spoonful of milk at the top of a cup 

otherwise filled with black tea. In fact, all systems, irrespective of their specific makeup, behave in 

this way! This fact is enshrined in the so-called Second Law of thermodynamics (TD), which, 

roughly, states that transitions from equilibrium to non-equilibrium states cannot occur in isolated 

systems. Thermodynamics describes a system in terms of macroscopic quantities such as pressure, 

volume and temperature. Its laws are formulated solely in terms of these and it makes no reference 

to a system's microscopic constitution. For this reason TD is a `macro theory'. In order to give a 

precise formulation of the Second Law, TD introduces a quantity called entropy (the precise 

definition of which need not occupy us here). The Second Law then says that entropy in closed 

systems (such as our gas) cannot decrease, and in fact processes like the spreading of the gas are 

characterised by an increase in entropy. 

 

But there is an altogether different way of looking at that same gas. The gas consists of a large 

number of gas molecules (a vessel on a laboratory table contains something like 1023 molecules). 
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These molecules bounce around under the influence of the forces exerted onto them when they 

crash into the walls of the vessel and when they collide with each other. The motion of each 

molecule under these forces is governed by laws of mechanics, which, in what follows, we assume 

to be the laws of classical mechanics (CM). We now know that quantum mechanics and not 

classical mechanics is the fundamental theory of matter. In the current context we nevertheless stick 

with classical mechanics because the central problems in connection with statistical mechanics 

remain, mutatis mutandis, the same if we replace classical mechanics with quantum mechanics and 

is easier to discuss these if we do not at the same time also have to deal with all the conceptual 

problems raised by quantum mechanics.  

 

In other words, the gas is a large mechanical system and everything that happens in it is determined 

by the laws of mechanics. Since classical mechanics in this context governs the behaviour of the 

micro constituents of a system it is referred to as the 'micro theory'. 

 

This raises the question of how the two ways of looking at the gas fit together. Since neither the 

thermodynamic nor the mechanical approach is in any way privileged, both have to lead to the same 

conclusions. In particular, it has to follow from the mechanical description that the Second Law is 

valid (since this law is a well-confirmed empirical fact). Statistical mechanics (SM) is the discipline 

that addresses this task. Its two most fundamental questions are the following. First, how can we 

characterise equilibrium from a mechanical point of view? This is the task addressed in equilibrium 

SM. Second, what is it about molecules and their motions that leads them to spread out and assume 

a new equilibrium state when the shutter is removed? And crucially, what accounts for the fact that 

the reverse process won't happen? This is the central problem of non-equilibrium SM. 

 

Hence, from a more abstract point of view we can say that SM is the study of the connection 

between micro-physics and macro-physics: it aims to account for this behaviour in terms of the 

dynamical laws governing the microscopic constituents of macroscopic systems. The term 

`statistical' in its name is owed to the fact that, as we will see, a mechanical explanation can only be 

given if we also introduce probabilistic elements into the theory. The aim of this chapter is to lay 

out the main tenets of SM, and to explain the foundational problems that it faces.  

 

Such a project faces an immediate difficulty. Foundational debates in many other fields of physics 

can take as their point of departure a generally accepted formalism. Not so in SM. Unlike quantum 

mechanics and relativity theory, SM has not yet found a generally accepted theoretical framework, 



 4

let alone a canonical formulation. What we find in SM is a plethora of different approaches and 

schools, each with its own programme and mathematical apparatus. 

 

All these schools use (slight variants) of either of two theoretical frameworks, one of which can be 

associated with Boltzmann’s 1877 landmark paper and the other with Gibbs’ seminal 1902 book, 

and can thereby be classified as either 'Boltzmannian' or 'Gibbsian'. For this reason I divide my 

presentation of SM into a Boltzmannian and a Gibbsian part. It is important, at least initially, to 

keep these two frameworks apart because they give rise to markedly different characterisations both 

of equilibrium and of non-equilibrium, and accordingly the problems that beset accounts formulated 

within either framework are peculiar to one framework and often do not have a counterpart in the 

other. But before embarking on a discussion of these approaches, we need to say more about CM. 

 

 

2. Classical Mechanics 

 

CM can be presented in various more or less but not entirely equivalent formulations: Newtonian 

mechanics, Lagrangean mechanics, Hamiltonian mechanics and Hamiltion-Jacobi theory. 

Hamiltonian Mechanics is best suited to the purposes of SM, and therefore this section focuses 

entirely on this version of CM. 

 

CM describes the world as consisting of point-particles, which are located at a particular point in 

space and have a particular momentum (where a particle's momentum essentially is its velocity 

times its mass). A system's state is fully determined by a specification of each particle's position and 

momentum – that is, if you know the positions and the momenta of all particles in the system you 

know everything that there is to know about the system's state from a mechanical point of view. 

Conjoining the space and momentum dimension of all particles of a system in one vector space 

yields the so-called phase space  of the system. For a particle moving around in the three 

dimensional space of our every-day experience, the phase space basically consists of all points 

X  (x, y,z, px, py , pz) , where x , y , and z  are the three directions in space, and px , py , and pz  are 

the momenta in the x , y , and z  directions. So the phase space of one particle has six 

(mathematical) dimensions. The phase space of a system consisting of two particles is the collection 

of all points X  (x1, y1,z1,x2, y2,z2, px1
, py1

, pz1
, px2

, py2
, pz2

), where x1, y1, and z1 are the spatial 

locations of the first particle, x2 , y2, and z2 the one of the second particle, and px1
, ..., are the 

momenta in the respective directions. Hence, the phase space of such a system is twelve-
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dimensional. The generalisation of this to a system of n  particles – which is what SM studies – is 

now straightforward: it is a 6n  dimensional abstract mathematical space. If X  is the state of an n  

particle gas, it is also referred to as the system's micro-state. 

 

An important feature of  is that it is endowed with a so-called Lebesgue measure  . Although  

is an abstract mathematical space, the leading idea of a measure is exactly the same as the one of a 

volume in the three dimensional space of every-day experience: it is a device to attribute sizes to 

parts of space. We say that a certain collection of points of this space (for instance the ones that lie 

inside a bottle) have a certain volume (for instance one litre), and in the same way can we say that a 

certain set of points in  has a certain -measure. If A  is a set of points in , we write (A) to 

denote the -measure of this set. At first it may seem counterintuitive to have measures ('volumes') 

in spaces of more than three dimensions (as the above X  show, the space of a one particle system 

has six and the one of a two particle system twelve dimensions). However, the idea of a higher 

dimensional measure becomes rather natural when we recall that the moves we make when 

introducing higher dimensional measures are the same as when we generalise one-dimensional 

length, which is the Lebesgue measure in one dimension, to two dimensions, where the usual 

surface is the Lebesgue measure, and then to three dimensions, where volume is the Lebesgue 

measure. 

 

The system's state usually changes in time; for instance, it might change from X  (0,0,0,1,3,2)   to 

X  (7,5,8,3,2,6) over the course of five seconds. This change does not happen in an arbitrary way; 

in fact it is governed by the so-called Hamiltonian equations of motion. The precise form and 

character of these equations need not occupy us here, but two points are important. First in their 

general form the equations of motions are an 'equation schema' since they contain a blank, so to 

speak. This blank has to be filled with a function H  which specifies how the energy of the system 

depends on its state. This dependence takes different forms in different systems. It is at this point 

that the specific physical properties of a system under investigation come into play, and different 

Hamiltonians give raise to different kinds of motions. Second, if the Hamiltonian that we plug into 

the general equations has certain nice properties (which it does in the cases we are interested in 

here), then the equations have unique solutions in the following sense: pick a particular instance of 

time (you can pick any instant you like, but you can pick only one!) and call it t0; then prepare the 

system in a particular state, the so-called 'initial condition', which you are also free to choose as you 

like; if you have done this, then the equations of motion (which now contain the particular 

Hamiltonian of your system) uniquely determine the state of the system at any other time t . To 

make this more vivid consider the following thought experiment. You have 1000 copies of the same 
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system (in the sense that they consist of the same number of particles and are governed by the same 

Hamiltonian). Then you pick a particular instance of time t0 and make sure that at that time all 1000 

systems are in the same state. Now you let the evolution in each system take its course and look at 

the systems again one hour later. You will then find that also one hour later all 1000 systems are in 

the same state – they have evolved in exactly the same way! For instance, if all systems were in 

state X  (0,0,0,1,3,2)  at t0 and the first system has evolved into X  (7,5,8,3,2,6) after one hour, 

then all other systems have evolved into X  (7,5,8,3,2,6) as well. And this will be so if you have 

10 000 systems or 100 000 or any number you like; and it will be true after one hour, after two 

hours, after three hours ... after any amount of time you like. There will never be a system that 

deviates from what the others do. 

 

The function that tells us what the system's state at some later point will be is called a 'phase flow' 

and we denote it with the letter  . We write t (X) to denote the state into which X  evolves under 

the dynamics of the system if time t  (e.g. one hour) elapses, and similarly we write t (A) to denote 

the image of a set A  (of states) under the dynamics of the system. The 'line' that t (X) traces 

through the phase space is called a trajectory. 

 

Let us illustrate this with a simple example. Consider a pendulum of the kind we know from 

grandmothers' clocks: a bob of mass m  is fixed to a string of length l and oscillates back and forth. 

To facilitate the calculations we assume that the string is massless, there is neither friction nor air 

resistance, and the only force acting on the pendulum bob is gravity. It is then easy to write down 

the pendulum's Hamiltonian and solve the equations. The solutions, it turns out, are ellipses in 

phase space – so the system's trajectory is an ellipse. Figure 2a shows the leftmost and the rightmost 

snapshot of the motion and the pendulum's trajectory in phase space. Depending on the initial 

condition (e.g. how far to the left you move the bob before you let go), the bob moves on a         

different ellipse. This is shown in the upper half of Figure 2b. 
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The Hamiltonian dynamics of systems has three distinctive features. The first one, known as 

Liouville's theorem, says that the measure   is invariant under the dynamics of the system: 

(A)  (t (A)) for all A  and all t . This means that the measure of a set does not change in time: 

if you measure a set now and and you measure it tomorrow you are bound to find the same value. 

This is illustrated in the lower half of figure 2b, where a circular set A  moves around under the 

dynamics of the pendulum and does not change its surface. 

 

The second distinctive feature is Poincaré's recurrence theorem. Roughly speaking this theorem 

says that a system will sooner or later return arbitrarily close to its initial state. The time that it takes 

the system to return close to its initial state is called 'Poincaré recurrence time'. Recurrence can also 

easily be seen in the above example: the system returns to the exact same state after every full 

oscillation. In this simple example Poincaré recurrence is obvious; the surprising thing is that we 

find this kind of recurrence in every system, no matter how complicated its phase flow. 

 

The third is so-called time reversal invariance. The Hamiltonian equations of motion in a sense 

perform the function of a censor: they say which time evolutions are allowed by the theory and 

which ones are not. Now consider a ball moving from left to right and record this process on 

videotape. Intuitively, time reversal amounts to playing the tape backwards, which makes us see a 

ball moving from right to left. So we can ask the question: if the first process (motion from left to 
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right) is allowed by the theory, is the reverse of this process (motion from right to left) allowed too? 

If the answer to this question is 'yes' in all cases, then the theory is said to be time reversal invariant. 

It turns out that the Hamiltonian equations of motion have this property (and this is non-trivial: not 

all equations of motion are time reversal invariant). Again, time reversal invariance is easy to see in 

our example: both the original motion and its reverse are possible. 

 

 

3. The Boltzmann Approach 

 

Over the years Boltzmann developed a multitude of different approaches to SM. However, 

contemporary Boltzmannians, take the account introduced by Boltzmann in his seminal 1877 paper 

as their starting point. For this reason we concentrate on this approach. 

 

Let us start with macro-states. We assume that every system has a certain number of macro states 

M1,...,Mk  (where k  is a natural number that depends on the specifics of the system), which are 

characterised by the values of macroscopic variables, in the case of a gas pressure, temperature, and 

volume. In the introductory example one macro-state corresponds to the gas being confined to the 

left half, another one to it being spread out. In fact, these two states have special status: the former 

is the gas' initial state, which, for reasons that will become clear later, we call the past state and 

label by M p ; the latter is the gas' equilibrium state, which we label Meq . 

 

What is the relation between micro-states and macro-states? It is one of the fundamental posits of 

the Boltzmann approach that the former determine the latter. More specifically, the posit is that a 

system's macro-state supervene on its micro-state, meaning that a change in the macro-state must be 

accompanied by a change in the micro-state X : if M  changes then X  has to change too. For 

instance, it is not possible to change the pressure of a system and at the same time keep its micro-

state constant. Hence, to every given micro-state X  there corresponds exactly one macro-state. 

Let us refer to this macro-state as M(X) . This determination relation is not one-to-one; in fact 

many different X  can correspond to the same macro-state. We now group together all micro-states 

X  that correspond to the same macro-state, which yields a partitioning of the phase space in non-

overlapping regions that each correspond to a macro-state. For this reason we use the same letters, 

M1,...,Mk , to refer to macro-states and the corresponding regions in phase space. This is illustrated 

in Figure 3a. 
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We are now in a position to introduce the Boltzmann entropy. To this end recall that we have a 

measure on  that assigns to every set a particular volume, hence a fortiori also to macro-states. 

With this in mind, we define the Boltzmann entropy of a macro-state Mi, SB (Mi) , as a constant – 

the so-called Boltzmann constant kB  – times the logarithm of the measure of the macro-state: 

SB (Mi)  kB log[(Mi)]. The important feature of the logarithm is that it is a monotonic function: 

the larger (Mi) , the larger its logarithm. From this it follows that the largest macro-state also has 

the highest entropy! 

 

One can show that, at least in the case of dilute gases, the Boltzmann entropy coincides with the 

thermodynamic entropy (in the sense that both have the same functional dependence on the basic 

state variables), and so it is plausible to say that the equilibrium state is the macro-state for which 

the Boltzmann entropy is maximal (since TD posits that entropy be maximal for equilibrium states). 

By assumption the system begins in a low entropy state, the past state M p . The problem of 

explaining the approach to equilibrium then amounts to answering the question: why does a system 

originally in M p  eventually move into Meq? This is illustrated in Figure 3b. 

 

Or more precisely, to underwrite the Second Law one would have to show that all trajectories 

starting in M p  must end up in Meq . Unfortunately it is clear that this would be aiming too high – it 

is generally accepted that the best we can hope for is to get a justification of something a bit weaker 

than the strict Second Law, namely a 'probabilistic version' of it which I call Boltzmann's Law (BL): 
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Consider an arbitrary instant of time t  t1 and assume that the Boltzmann entropy of the system at that 

time, SB (t1), is far below its maximum value. It is then highly probable that at any later time t2  t1  we 

have )()( 12 tStS BB  .  

 

The central problem now is to elucidate the notion of an entropy increase being `highly likely'. This 

problem has two aspects, one conceptual and one formal. The conceptual problem consists in 

explaining what notion of probability is at play here: what do we mean when we talk about it being 

likely that the entropy increases? The formal problem is to provide a justification that the claim 

made in BL is indeed true, which essentially depends on the system's dynamics. 

 

There are two prominent ways of introducing probabilities into the Boltzmannian apparatus 

developed so far. The first, which is associated with Boltzmann himself, interprets probabilities as 

time averages. More specifically, the view is that the probability of a macro-state is the proportion 

of time that the system actually spends in that state in the long run. For instance, if the system 

spends 10% of the time in macro-state M1, then the probability of this state is 0.1. 

 

Already Boltzmann realised that a strong dynamical assumption is needed to make this suggestion 

fly: the system has to be ergodic. Roughly speaking, a system is ergodic if, on average, the time it 

spends in a subset of the phase space is proportional to the portion of the phase space occupied by 

that set. So if, for instance, set A  occupies one quarter of the phase space, then an ergodic system 

spends one quarter of its time in A . It follows immediately that the most likely macro-state is the 

equilibrium state, as we would expect. 

 

The proper mathematical formulation of ergodicity was a formidable problem that was solved 

satisfactorily only half a century after Boltzmann had proposed the idea. But even this was not the 

end of difficulties. On the one hand it was soon realised that there are systems showing the right 

sort of behaviour (i.e. they approach equilibrium) while they fail to be ergodic and hence ergodicity 

does not seem to be the key ingredient in an explanation of thermodynamic behaviour. On the other 

hand there are technical problems with the account that cast doubt on its workability.  

 

The second approach focusses on the internal structure of macro-states and assigns probabilities 

using the so-called statistical postulate (SP), the posit that given the system is in macro-state M , 

the probability of finding the system's micro-state in a certain subset A  of M  is proportional to that 

set's size: p(A)  (A) /(M) . This is illustrated in Figure 4a. 
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How is this useful to explain BL? The answer to this question lies in recalling that the phase flow 

t  completely determines the future for every point X  in phase space, and hence a fortiori for 

every point in M . Given this, we can sort the points in M  in 'good' and 'bad', where the good ones 

are those that move into a macro-state of higher entropy when the trajectory on which they lie leave 

M ; the bad ones are those that move towards macro-states of lower entropy. This is illustrated in 

Figure 4b. Now take A  to be the set of good points. Then the probability for an entropy increase is 

(A) /(M). This is the probability that BL talks about, and requires that it be high.  

 

So the crucial question then is: what reasons are there to believe that (A) /(M) is high for all 

macro-states (except the equilibrium state itself). Whether or not this is the case depends on the 

system's phase flow t , which, in turn, depends on the system's Hamiltonian (its energy function). It 

is clear that not all Hamiltonians give raise to phase flows that make SP true. So there is a 

substantive question, first, about which class of Hamiltonians does, and, second, whether the actual 

system under scrutiny belongs to this class. Although this question is of central importance, it has, 

somewhat surprisingly, received relatively little attention in the recent literature on Boltzmann, and 

the same is true of the question of why a more complex version of SP to which we turn below holds 

true. The most promising approach to this problem seems to be one employing typicality arguments 

originally proposed by Goldstein.  

 

But even if this question is answered satisfactorily, there are more problems to come. As Loschmitd 

pointed out in a controversy with Boltzmann in the 1870s, trying to explain unidirectional 
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behaviour by appeal to dynamical features of a system is highly problematic because there is no 

such unidirectionality at the mechanical level. In fact, as we have seen above, Hamiltonian 

mechanics is time reversal invariant and so everything that can happen in one direction can also 

happen in the other. More specifically, if the transition from a certain low entropy state to a higher 

entropy state is permitted by the underlying dynamics (which is what we want), then the reverse 

transition from the high to the low entropy state is permitted as well (which is what we don't want!). 

This point is known as Loschmidt's reversibility objection. 

 

One might now try to mitigate the force of this argument by pointing to the fact that BL is a 

probabilistic and not a universal law (and hence allows for some unwanted transitions), and then 

arguing that the unwanted transitions are unlikely. Unfortunately this hope is shattered as soon as 

we try to make good on this suggestion. Calculations show that if the system, in macro-state M , is 

very likely to evolve towards a macro-state of higher entropy in the future (which we want to be the 

case), then, because of the time reversal invariance of the underlying dynamics, the system is also 

very likely to have evolved into the current macro-state M  from another macro-state M  of higher 

entropy than M . So whenever the system is very likely to have a high entropy future it is also very 

likely to have a high entropy past. This stands in stark contradiction with both common sense 

experience and BL itself. If we have a lukewarm cup of coffee on the desk, SP makes the radically 

wrong retrodiction that is overwhelmingly likely that 5 minutes ago the coffee was cold (and the air 

in the room warmer), but then fluctuated away from equilibrium to become lukewarm and five 

minutes from now will be cold again. However, in fact the coffee was hot five minutes ago, cooled 

down a bit and will have further cooled down five minutes from now. 

 

Before addressing this problem, let us add another difficulty, now known as Zermelo's Recurrence 

Objection. As we have seen above, Poincaré's recurrence theorem says, roughly, that almost every 

point in the systems phase space lies on a trajectory that will, after some finite time (the Poincaré 

recurrence time), return arbitrarily close to that point. As Zermelo pointed out in 1896, this has the 

unwelcome consequence that entropy cannot keep  increasing all the time; sooner or later there will 

be a period of time during which the entropy of the system decreases. For instance, if we consider 

again the initial example of the gas (Figure 1), it follows from Poincaré's recurrence theorem that 

there some time in the future the gas will return to the left half of the container all by itself. This is 

not what we expect. 

 

In response to the first problem (Loschmidt's objection) it has been pointed out that it is no surprise 

that an approach trying to underwrite BL solely by appeal to the laws of dynamics fails because a 
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system's actual behaviour is determined by its dynamical laws and its initial condition. Hence there 

need not be a contradiction between time reversal invariant laws and the fact that high to low 

entropy transitions do only very rarely occur. All we have to do is factor in that the system have low 

entropy initial conditions. The problem with wrong claims about the past can then be solved by 

explicitly conditionalising on the system's initial state, M p . This amounts to replacing SP, which 

makes no reference to the system's past, by a rule that does. Such a rule can be constructed by 

considering a different class of states when attributing probabilities to increasing entropy. SP 

considers all states in M  and then asks what proportion of them have a higher entropy future. But, 

so the argument goes, this is the wrong consideration. We should only consider those states in M  

which have the right past; i.e. those that have started off in M p . So the right question to ask is not 

what portion of micro-states in M , but rather what portion of microstates in Rt  M t (Mp ) has a 

higher entropy future, where t (M p )  is the image of the initial state under the dynamics of the 

system since the process started. We then have to replace SP by SP*: p(A)  (A Rt ) /(Rt ). This 

is illustrated in Figure 5. 

 

 

By construction, those fine-grained micro-states in M  having the wrong past have been ruled out, 

which is what we need. Given this, we can formulate a condition for BL to be true: it has to be the 

case that if we choose A  to be the set of those states that have a higher entropy future, then the 

probabilities given by SP* for a high entropy future have to come out high. As indicated above, it is 

a substantial question for which class of Hamiltonians this is true. Unfortunately we do not see 

much discussion of this problem in the literature, and probably the most promising – but as yet still 
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underexplored – suggestion might be an approach based on typicality. 

 

There is controversy over what exactly counts as M p . The issue is at what point in time the relevant 

low entropy initial condition is assumed to hold. A natural answer would be that the beginning of an 

experiment is the relevant instant; we prepare the gas such that it sits in the left half of the container 

before we open the shutter and this is the low entropy initial condition that we need. This is how we 

have been talking about the problem so far. 

 

Many physicists and philosophers think that this is wrong because the original problem (explaining 

why entropy increases towards the future) recurs if we think about how the low entropy state at the 

beginning of the experiment came about in the first place. Our gas is part of a larger system 

consisting of the laboratory and even the person who prepared the gas, and this system already 

existed prior to the beginning of the experiment. Since this larger system is also governed by the 

laws of CM we are forced to say that the system as a whole is highly likely to have come into the 

state it is in at the beginning of the experiment from one of higher entropy. And this argument can 

be repeated for every instance you choose. The problem is obvious by now: whichever point in time 

we chose to be the point for the low entropy initial condition to hold, it follows that the 

overwhelming majority of trajectories compatible with this state are such that their entropy was 

higher in the past. An infinite regress looms large. This regress can be undercut by assuming that 

there is an instant that simply has no past, in which case it simply does not make sense to say that 

the system has evolved into that state from another state. In other words, we have to assume that the 

low entropy condition holds at the beginning of the universe. And this is indeed that move many are 

willing to make: M p  is the state of the universe just after the big bang. When understood in this 

way, the claim that the system started off in a low entropy state is called the Past Hypothesis, and 

M p  is referred to as the Past State. Cosmology is then taken to provide evidence for the truth of the 

Past Hypothesis, since modern cosmology informs us that the universe was created in the big bang a 

long but finite time ago and that it then was in a low entropy state. 

 

But the Past Hypothesis has not gone unchallenged. Earman argues that it is 'not even false', since 

the Boltzmann entropy is undefinable in the relevant (relativistic) cosmological models. Another, 

more philosophical, worry is that the need to introduce the Past Hypothesis to begin with only arises 

if one has a particular view of laws of nature. We started with a pledge to explain the behaviour of 

homely systems like a vessel full of gas and ended up talking about the universe as a whole due tho 

the above regress argument. But this argument relies on the assumption that laws are universal in 

the sense of being valid all the time and everywhere: the whole world – not only the gas, but also its 
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laboratory environment and even the person preparing the system for the experiment – are governed 

by the deterministic laws of classical mechanics. Only under this assumption there is a problem 

about the system's high entropy past prior to the beginning of the experiment. However, the 

universal validity of laws, and in particular the laws of mechanics, is not uncontroversial. Some 

believe that these laws are valid only locally and claiming universal validity is simply a mistake. 

But if one denies that the large system consisting of the gas, the stuff in the laboratory, the physicist 

doing the experiment, and ultimately the entire universe is one big mechanical systems, then we 

can't use mechanics to predict that the system prior to the beginning of the experiment is very likely 

to have been in a state of higher entropy and the need for a cosmological Past Hypothesis 

evaporates. 

 

Those who hold such a more 'local' view of laws pursue what is known as a 'branch systems 

approach'. The leading idea is that the isolated systems relevant to SM have neither been in 

existence forever, nor continue to exist forever after the thermodynamic processes took place. 

Rather, they separate off from the environment at some point (they 'branch') then exist as 

energetically isolated systems for a while and then usually merge again with the environment. Such 

systems are referred to as 'branch systems'. For instance, the system consisting of a glass and an ice 

cube comes into existence when someone puts the ice cube into the water, and it ceases to exist 

when someone pours it into the sink. So the question becomes why a branch system like the water 

with the ice cube behaves in the way it does. An explanation can be given along the lines of the past 

hypothesis, with the essential difference that the initial low entropy state has to be postulated not for 

the beginning of the universe but only for the state of the system immediately after the branching. 

Since the system, by stipulation, did not exist before that moment, there is also no question of 

whether the system has evolved into the current state from a higher entropy state. This way of 

looking at things is in line with how working physicists think about these matters for the simple 

reason that low entropy states are routinely prepared in laboratories. 

 

Irrespective of how this issue is resolved, there are three further issues that need to be addressed. 

The first is the interpretation of the probabilities in SP*. So far we have not said anything about 

how those probabilities should be interpreted. And in fact this is not an easy question. The most 

plausible interpretation is to interpret these probabilities as Humean chances in Lewis' sense. 

 

The second is Zermelo's recurrence objection, which, roughly, says that entropy cannot always 

increase because every mechanical system returns arbitrarily close to its initial state after some 

finite time. If directed at the full Second Law this objection is indeed fatal. However, there is no 
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logical contradiction between recurrence and BL since BL does not require that entropy always 

increase. However, it could still be the case that recurrence is so prevalent at times that the 

probabilities for entropy increase are no longer high. While there is no in principle reason to rule 

this out, the standard response to the objection points out that this is something we never 

experience: according to the Past Hypothesis, the universe is still today in a low entropy state far 

away from equilibrium and recurrence will therefore presumably not occur within all relevant 

observation times. This, of course, is compatible with there being periods of decreasing entropy at 

some later point in the history of the universe. Hence, we simply should not view BL as valid at all 

times. And this reply also works for those who adopt a branch systems approach since even for a 

small system like a gas in box the Poincaré recurrence time is larger than the age of the universe 

(Boltzmann himself estimated that the time needed for a recurrence to occur for a system consisting 

of a cubic centimeter of air was about 101019

 seconds). In sum, we get around Zermelo's objection by 

giving up not only the strict Second Law, but also the universal validity of BL. This is a high price 

to pay, but it is the only way to reconcile entropy increase with Poincaré's recurrence. 

 

The third issue is reductionism. We have so far made various reductionist assumptions. We have 

assumed that the gas really is just a collection of molecules, and, more controversially, we have 

assumed that the Second Law, or some close cousin of it, has to be derivable from the mechanical 

laws governing the motion of the gas molecules. In philosophical parlance this amounts to saying 

that the aim of SM is to reduce TD to mechanics plus probabilistic assumptions. 

 

What does such a reduction involve? Over the past decades the issue of reductionism has attracted 

the attention of many philosophers and a vast body of literature on the topic has grown. This 

enthusiasm did not resonate with those writing on the foundations of SM and the philosophical 

debates over the nature (and even desirability) of reduction had rather little impact on work done on 

the foundations of SM (this is true for both the Boltzmannian and Gibbsian traditions). This led to a 

curious mismatch between the two debates. A look at how reductionism is dealt with in the 

literature on SM shows that, by and large, there is agreement that the aim of SM is to derive the 

laws of TD (or something very much like it) from the underlying micro theory. This has a familiar 

ring to it for those who know the philosophical debates over reductionism. In fact, it is precisely 

what Nagel declared to be the aim of reduction. So one can say that the Nagelian model of 

reduction is the (usually unquestioned and unacknowledged) 'background philosophy' of SM. 

 

However, Nagel's theory of reduction is widely claimed to be seriously flawed and therefore 

untenable. But this puts us into an uneasy situation: here we have a respectable physical theory, but 
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this theory is based on a conception of reduction that is generally regarded as unacceptable by 

philosophers. This cannot be. Either the criticisms put forward against Nagel's model of reduction 

have no bite, at least within the context of SM, or there must be another, better, notion of reduction 

which can account for the practices of SM. Somewhat surprisingly, this problem has not been 

recognised in the debate and so we don't know what notion of reductionism is at work in SM. 

 

 

4. The Gibbs Approach 

 

At the beginning of the Gibbs approach stands a radical rupture with the Boltzmann programme. 

The object of study for the Boltzmannians is an individual system, consisting of a large but finite 

number of micro constituents. By contrast, within the Gibbs framework the object of study is a so-

called ensemble, an uncountably infinite collection of independent systems that are all governed by 

the same Hamiltonian but distributed over different states. Gibbs introduces the concept as follows: 

 

We may imagine a great number of systems of the same nature, but differing in the configurations and 

velocities which they have at a given instant, and differing not only infinitesimally, but it may be so as to 

embrace every conceivable combination of configuration and velocities. And here we may set the 

problem, not to follow a particular system through its succession of configurations, but to determine how 

the whole number of systems will be distributed among the various conceivable configurations and 

velocities at any required time, when the distribution has been given for some one time.  

 

Ensembles are fictions, or mental copies of the one system under consideration; they do not interact 

with each other, each system has its own dynamics, and they are not located in space and time. 

Hence, it is important not to confuse ensembles with collections of micro-objects such as the 

molecules of a gas. The ensemble corresponding to a gas made up of n  molecules, say, consists of 

an infinite number of copies of the entire gas. 

 

Now consider an ensemble of systems. The instantaneous state of one system of the ensemble is 

specified by one point in its phase space. The state of the ensemble as a whole is therefore specified 

by a density function   on the system's phase space.   is then regarded as a probability density, 

reflecting the probability of finding the state of a system chosen at random from the entire ensemble 

in region R of  : p(R)  
R

 d. To make this more intuitive consider the following simple 

example. You play a special kind of darts: you fix a plank to the wall, which serves as your dart 

board. For some reason you know that the probability of your dart landing at a particular place on 
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the board is given by the curve shown in Figure 6. You are then asked what the probability is that 

your next dart lands in the left half of the board. The answer is 1/2 since one half of the surface 

underneath the curve   is above the left side (and the integral of   over a certain region is just the 

surface that the curve encloses over that region). In SM R plays the role of a particular part of the 

board (in the example here the left half), and   is the probability, but not for a dart landing but for 

finding a system there. 

 

 

The importance of this is that it allows us to calculate expectation values. Assume that the game is 

such that you get one Pound if the dart hits the left half and three Pounds if it lands on the right half. 

What is your average gain? The answer is 1/2   1 Pound + 1/2   3 Pounds = 2 Pounds. This is the 

expectation value. The same idea is at work in SM in general. Physical magnitudes like, for 

instance, pressure, are associated with functions f  on  and then we calculate the expectation 

value, which, in general is given by f  f

  d. These expectation values, in the context of SM 

also referred to as phase averages or ensemble averages are of central importance because it is one 

of the central posits of Gibbsian SM that these values are what we observe in experiments! So if 

you want to use the formalism to make predictions, you first have to figure out what the probability 

distribution   is, then find the function f  corresponding to the physical quantity you are interested 

in, and then calculate the phase average. Neither of these steps is easy in practice and working 

physicists spend most of their time doing these calculations. However, these difficulties need not 

occupy us here. 
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Given that observable quantities are associated with phase averages and that equilibrium is defined 

in terms of the constancy of the macroscopic parameters characterising the system, it is natural to 

regard the stationarity of the distribution as a necessary condition for equilibrium because stationary 

distributions yield constant averages. For this reason Gibbs refers to stationarity as the `condition of 

statistical equilibrium'.  

 

Among all stationary distributions those satisfying a further requirement, the Gibbsian maximum 

entropy principle, play a special role. The Gibbs entropy (sometimes also 'ensemble entropy') is 

defined as SG ()  kB  log()d

 , where   is the above probability density and kB  the 

Boltzmann constant. The Gibbsian maximum entropy principle then requires that SG ()  be 

maximal, given the constraints that are imposed on the system. 

 

The last clause is essential because different constraints single out different distributions. A 

common choice is to keep both the energy and the particle number in the system fixed: E const 

and n const (while also assuming that the spatial extension of the system is finite). One can prove 

that under these circumstances SG ()  is maximal for the so-called the 'microcanonical distribution' 

(or 'microcanonical ensemble'). If we choose to hold the number of particles constant while 

allowing for energy fluctuations around a given mean value we obtain the so-called canonical 

distribution; if we also allow the particle number to fluctuate around a given mean value we find the 

so-called grand-canonical distribution. 

 

This formalism is enormously successful in that correct predictions can be derived for a vast class 

of systems. But the success of this formalism is rather puzzling. The first and most obvious question 

concerns the relation of systems and ensembles. The probability distribution in the Gibbs approach 

is defined over an ensemble, the formalism provides ensemble averages, and equilibrium is 

regarded as a property of an ensemble. But what we are really interested in is the behaviour of a 

single system. What can the properties of an ensemble, a fictional entity consisting of infinitely 

many copies of a system, tell us about the one real system on the laboratory table? And more 

specifically, why do averages over an ensemble coincide with the values found in measurements 

performed on an actual physical system in equilibrium? There is no obvious reason why this should 

be so. 

 

Common textbook wisdom justifies the use of phase averages as follows. As we have seen the 

Gibbs formalism associates physical quantities with functions f  on the system's phase space. 
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Making an experiment to measure one of these quantities takes time. So what measurement devices 

register is not the instantaneous value of the function in question, but rather its time average over 

the duration of the measurement; hence time averages are what is empirically accessible. Then, so 

the argument continues, although measurements take an amount of time that is short by human 

standards, it is long compared to microscopic time scales on which typical molecular processes take 

place. For this reason the actually measured value is approximately equal to the infinite time 

average of the measured function. We now assume that the system is ergodic. In this case time 

averages equal phase averages, and the latter can easily be obtained from the formalism. Hence we 

have found the sought-after connection: the Gibbs formalism provides phase averages which, by 

ergodicity, are equal to infinite time averages, and these are, to a good approximation, equal to the 

finite time averages obtained from measurements. 

 

This argument is problematic for at least two reasons. First, from the fact that measurements take 

some time it does not follow that what is actually measured are time averages. So we would need an 

argument for the conclusion that measurements produce time averages. Second, even if we take it 

for granted that measurements do produce finite time averages, then equating these with infinite 

time averages is problematic. Even if the duration of the measurement is very long (which is often 

not the case as actual measurement may not take that much time), finite and infinite averages may 

assume very different values. And the infinity is crucial: if we replace infinite time averages by 

finite ones (no matter how long the relevant period is taken to be), then the ergodic theorem does 

not hold any more and the explanation is false. 

 

These criticisms seem decisive and call for a different strategy. Three suggestions stand out. The 

first response, due to Malament and Zabell, tackles this challenge by suggesting a way of explaining 

the success of equilibrium theory that still invokes ergodicity, but avoids altogether appeal to time 

averages. This avoids the above mentioned problems, but suffers from the difficulty that many 

systems that are successfully dealt with by the formalism of SM are not ergodic. To circumvent this 

difficulty Vranas has suggested replacing ergodicity with what he calls  -ergodicity. Intuitively a 

system is  -ergodic if it is ergodic not on the entire phase space, but on a very large part of it. The 

leading idea behind his approach is to challenge the commonly held belief that even if a system is 

just a 'little bit' non-ergodic, then it behaves in a completely `un-ergodic' way. Vranas points out 

that there is a middle ground and then argues that this middle ground actually provides us with 

everything we need. This is a promising proposal, but it faces three challenges. First, it needs to be 

shown that all relevant systems really are  -ergodic. Second, the argument so far has only been 

developed for the microcanonical ensemble, but one would like to know whether, and if so how, it 
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works for the canonical and the grandcanonical ensemble. Third, it is still based on the assumption 

that equilibrium is characterised by a stationary distribution, which, as we will see below, is an 

obstacle when it comes to formulating a workable Gibbsian non-equilibrium theory. 

 

The second response begins with Khinchin's work, who pointed out that the problems of the ergodic 

programme are due to the fact that it focusses on too general a class of systems. Rather than 

studying dynamical systems at a general level, we should focus on those cases that are relevant in 

statistical mechanics. This involves two restrictions. First, we only have to consider systems with a 

large number of degrees of freedom; second, we only need to take into account a special class of 

phase functions, so-called sum functions, basically functions that are a sum of one-particle 

functions. Under these assumption Khinchin could prove that as n  becomes larger, the measure of 

those regions on the energy hypersurface where the time and the space means differ by more than a 

small amount tends towards zero. Roughly speaking, this result says that for large n  the system 

behaves, for all practical purposes, as if it was ergododic. 

 

The problem with this result is that it is valid only for sum functions, and in particular only if the 

Hamiltonian itself is a sum function, which usually is not the case. So the question is how this result 

can be generalised to more realistic cases. This problem stands at the starting point of a research 

programme now known as the 'thermodynamic limit'. Its leading question is whether one can still 

prove 'Khinchin-like' results in the case of Hamiltonians with interaction terms. Results of this kind 

can be proven in the limit for n  , if also the volume V  of the system tends towards infinity in 

such a way that the numberdensity n /V  remains constant. 

 

Both programmes discussed so far remain silent about the interpretation of probability. So how 

could probabilities in these theories be understood? There are two obvious choices. The first is 

some sort of frequentism. A common way of looking at ensembles, suggested by Gibbs himself, is 

to think about them in analogy with urns, but rather than containing balls of different colours they 

contain systems in different micro-states. The distribution   then gives the frequency with which 

we get a system in a certain state when drawing a system at random from the ensemble. First 

appearances notwithstanding, this is problematic. Ensembles just aren't urns from which one can 

draw systems at random! They are imaginary constructs and it is unclear at best what sense to make 

of the notion of drawing a system from an ensemble. 

 

The other way to interpret probabilities are time averages. This is a workable suggestion provided 

the system is ergodic. Its main problem is that it undercuts an extension of the approach to non-
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equilibrium situations (to which we turn below). Interpreting probabilities as infinite time averages 

yields stationary probabilities. As a result, phase averages are constant. This is what we expect in 

equilibrium, but it is at odds with the fact that we witness change and observe systems approaching 

equilibrium departing from a non-equilibrium state. This evolution has to be reflected in a change of 

the probability distribution, which is impossible if it is stationary by definition. 

 

Discontent with these approaches to probability is the point of departure for the third suggestion, 

which urges us to adopt an epistemic interpretation of probability. This view can be traced back to 

Tolman and has been developed into an all-encompassing approach to SM by Jaynes. At the heart 

of Jaynes' approach to SM lies a radical reconceptualisation of what SM is. On his view, SM is 

about our knowledge of the world, not about the world itself. The probability distribution represents 

our state of knowledge about the system at hand and not matters of fact about the system itself. 

More specifically, the distribution represents our lack of knowledge about a system's micro-state 

given its macro condition; and, in particular, entropy becomes a measure of how much knowledge 

we lack. 

 

To put this suggestion onto secure footing, Jaynes uses Shannon's notion of entropy together with 

the apparatus of information theory in which it is embedded. The leading idea then is that we should 

always choose the distribution that corresponds to a maximal amount of uncertainty, i.e. is 

maximally non-committal with respect to the missing information. Since in the continuous case the 

Shannon entropy has the same mathematical form as the Gibbs entropy, this immediately leads to 

the prescription to chose the distribution that maximises the Gibbs entropy, which is exactly what 

the formalism instructs us to do! 

 

This is striking, yet the very notion, as well as the application to SM, of the information theoretic 

entropy are fraught with controversy, which centres around the question of why it is rational to 

choose a high entropy distribution in the absence of relevant information. Moreover, interpreting 

the entropy as an expression of our knowledge rather than a property of the system has the 

counterintuitive consequence that both entropy and equilibrium are no longer properties of the 

system but rather of our epistemic situation. 

 

So far we have dealt with equilibrium. Let us now turn to the question of how the approach to 

equilibrium can be explained from a Gibbsian point of view. Unfortunately there are formidable 

obstacles. The first is that it is a consequence of the formalism that the Gibbs entropy is a constant! 

This precludes a characterisation of the approach to equilibrium in terms of increasing Gibbs 
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entropy, which is what one would expect if we were to treat the Gibbs entropy as the SM 

counterpart of the thermodynamic entropy. 

 

The second problem is the characterisation of equilibrium in terms of a stationary distribution. It is 

a mathematical matter of fact that the Hamiltonian equations of motion, which govern the system, 

preclude an evolution from a non-stationary to a stationary distribution: if, at some point in time, the 

distribution is non-stationary, then it will remain non-stationary for all times and, conversely, if it is 

stationary at some time, then it must have been stationary all along. For this reason a 

characterisation of equilibrium in terms of stationary distributions contradicts the fact that an 

approach to equilibrium takes place in systems that are not initially in equilibrium. Clearly, this is a 

reductio of a characterisation of equilibrium in terms of stationary distributions. 

 

Hence the main challenge for Gibbsian non-equilibrium theory is to find a way to get the Gibbs 

entropy moving, and to characterise equilibrium in a way that does not preclude change in the 

system. This can be done in different ways, and there is indeed a plethora of approaches offering 

distinct solutions. Coarse graining, interventionism, stochastic dynamics, the Brussels School, and 

the BBGKY hierarchy. These theories are beyond the scope of this introduction.  

 

Let me end this section with some remarks about reductionism. The conceptual problems in 

connection with reductionism mentioned above remain also crop up in the Gibbs framework. But on 

top of these, there are some issues that are specific to this framework. 

 

Boltzmann took over from TD the notion that entropy and equilibrium are properties of an 

individual system and sacrificed the idea that equilibrium (and the associated entropy values) are 

stationary. Gibbs, on the contrary, retains the stationarity of equilibrium, but at the price of making 

entropy and equilibrium properties of an ensemble rather than an individual system. This is because 

both equilibrium and entropy are defined in terms of the probability distribution  , which is a 

distribution over an ensemble and not over an individual system. Since a particular system can be a 

member of many different ensembles one can no longer assert that an individual system is in 

equilibrium. This 'ensemble character' carries over to other physical quantities, most notably 

temperature, which are also properties of an ensemble and not of an individual system. 

 

This is problematic because the state of an individual system can change considerably as time 

evolves while the ensemble average does not change at all; so we cannot infer from the behaviour 

of an ensemble to the behaviour of an individual system. However, what we are dealing with in 
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experimental contexts are individual systems; and so the shift to ensembles has been deemed 

inadequate by many. 

 

It is worth observing, however, that Gibbs himself never claimed to have reduced TD to SM and 

only spoke about 'thermodynamic analogies' when discussing the relation between TD and SM. The 

notion of analogy is weaker than that of reduction, but it is at least an open question whether this is 

an advantage. If the analogy is based on purely algebraic properties of certain variables then it is not 

clear what, if anything, SM contributes to our understanding of thermal phenomena; if the analogy 

is more than a merely formal one, then at least some of the problems that we have been discussing 

in connection with reduction are bound to surface again. 

 

 

5. Conclusion 

 

Even if all the inherent problems of the Boltzmannian and the Gibbsian approach could be solved, 

there would remain one big bad bug: the very existence of two different frameworks. One of the 

foremost problems of the foundation of SM is the lack of a generally accepted and universally used 

formalism, which leads to a kind of schizophrenia in the field. The Gibbs formalism has a wider 

range of application and is therefore the practitioner's workhorse. In fact, virtually all practical 

applications of SM are based on the Gibbsian machinery. The weight of successful applications 

notwithstanding, a consensus has emerged over the last decade and a half that the Gibbs formalism 

cannot explain why SM works and that when it comes to foundational issues the Boltzmannian 

approach is the only viable option. Hence, whenever the question arises of why SM is so successful, 

an explanation is given in Boltzmannian terms. 

 

So we are in the odd situation that we have one formalism to answer foundational questions, and 

another one for applications. This would not be particularly worrisome if the two formalisms were 

intertranslatable or equivalent in some other sense (like, for instance, the Schrödinger and the 

Heisenberg picture in quantum mechanics). However, as we have seen above, this is not the case. 

The two frameworks disagree fundamentally over what the object of study is, the definition of 

equilibrium, and the nature of entropy to mention just a few. So even if all the internal difficulties of 

either of these approaches were to find a satisfactory solution, we would still be left with the 

question of how the two relate. 
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A suggestion of how these two frameworks could be reconciled has recently been presented by 

Lavis. His approach involves the radical suggestion to give up the notion of equilibrium, which is 

binary in that systems either are or not in equilibrium, and to replace it by the continuous property 

of `commonmess'. Whether this move is justified and whether it solves the problem is a question 

that needs to be discussed in the future. 
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Glossary 

 

Entropy: Physical property of a system which reaches its maximum if the system is in equilibrium.  

 

Equilibrium: The state of a system in which all its macro-properties (such as temperature, pressure and volume)  

assume constant values (i.e. do not change over time). In statistical mechanics this state is characterized as having 

maximum entropy.  

 

Second Law of Thermodynamics: The proposition that The that entropy in closed systems cannot decrease.  

 

Statistical Mechanics: The study of the connection between micro-physics and macro-physics, which aims to account 

for system’s macroscopic behaviour in terms of the dynamical laws governing its microscopic constituents and 

probabilistic assumptions. 

 

 

Nomenclature 

 

CM: Classical Mechanics 

f : Phase or ensemble average of function f  

 : Phase flow 

 : Phase space 

kB : Boltzmann constant 

Mi : Macro states 
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Meq : Equilibrium macro state 

 : Lebesgue-measure 

SB : Boltzmann Entropy 

SG : Gibbs Entropy 

SM: Statistical Mechanics 

SP: Statistical Postulate 

TD: Thermodynamics  

X :State of the system 
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