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A FIELD GUIDE TO RECENT WORK ON THE
FOUNDATIONS OF STATISTICAL MECHANICS

ROMAN FRIGG

3.1 Introduction

3.1.1 Statistical Mechanics—A Trailer

Statistical mechanics (SM) is the study of the connection between micro-physics
and macro-physics.1 Thermodynamics (TD) correctly describes a large class of
phenomena we observe in macroscopic systems. The aim of statistical mechanics
is to account for this behaviour in terms of the dynamical laws governing the
microscopic constituents of macroscopic systems and probabilistic assumptions.2

This project can be divided into two sub-projects, equilibrium SM and non-
equilibrium SM. This distinction is best illustrated with an example. Consider a
gas initially confined to the left half of a box (see fig. 3.1):

Fig. 3.1. Initial state of a gas, wholly confined to the left compartment of a box
separated by a barrier

This gas is in equilibrium as all natural processes of change have come to an
end and the observable state of the system is constant in time, meaning that
all macroscopic parameters such as local temperature and local pressure assume
constant values. Now we remove the barrier separating the two halves of the box.
As a result, the gas is no longer in equilibrium and it quickly disperses (see fig.
3.2):
This process of dispersion continues until the gas homogeneously fills the entire
box, at which point the system will have reached a new equilibrium state (see
fig. 3.3):

1Throughout this chapter I use ‘micro’ and ‘macro’ as shorthands for ‘microscopic’ and
‘macroscopic’ respectively.

2There is a widespread agreement on the broad aim of SM; see for instance Ehrenfest and
Ehrenfest (1912, p. 1), Khinchin (1949, p. 7), Dougherty (1993, p. 843), Sklar (1993, p. 3),
Lebowitz (1999, 346), Goldstein (2001, p. 40), Ridderbos (2002, p. 66) and Uffink (2007, p.
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100 RECENT WORK ON THE FOUNDATIONS OF STATISTICAL MECHANICS

Fig. 3.2. When the barrier is removed, the gas is no longer in equilibrium and
disperses

Fig. 3.3. Gas occupies new equilibrium state

From an SM point of view, equilibrium needs to be characterised in microphysical
terms. What conditions does the motion of the molecules have to satisfy to ensure
that the macroscopic parameters remain constant as long as the system is not
subjected to perturbations from the outside (such as the removal of barriers)?
And how can the values of macroscopic parameters like pressure and temperature
be calculated on the basis of such a microphysical description? Equilibrium SM
provides answers to these and related questions.

Non-equilibrium SM deals with systems out of equilibrium. How does a sys-
tem approach equilibrium when left to itself in a non-equilibrium state and why
does it do so to begin with? What is it about molecules and their motions that
leads them to spread out and assume a new equilibrium state when the shutter
is removed? And crucially, what accounts for the fact that the reverse process
won’t happen? The gas diffuses and spreads evenly over the entire box; but it
won’t, at some later point, spontaneously move back to where it started. And in
this the gas is no exception. We see ice cubes melting, coffee getting cold when
left alone, and milk mix with tea; but we never observe the opposite happen-
ing. Ice cubes don’t suddenly emerge from lukewarm water, cold coffee doesn’t
spontaneously heat up, and white tea doesn’t un-mix, leaving a spoonful of milk
at the top of a cup otherwise filled with black tea. Change in the world is uni-
directional : systems, when left alone, move towards equilibrium but not away
from it. Let us introduce a term of art and refer to processes of this kind as
‘irreversible’. The fact that many processes in the world are irreversible is en-
shrined in the so-called Second Law of thermodynamics, which, roughly, states
that transitions from equilibrium to non-equilibrium states cannot occur in iso-
lated systems. What explains this regularity? It is the aim of non-equilibrium SM

923).
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to give a precise characterisation of irreversibility and to provide a microphysical
explanation of why processes in the world are in fact irreversible.3

The issue of irreversibility is particularly perplexing because (as we will see)
the laws of micro physics have no asymmetry of this kind built into them. If a
system can evolve from state A into state B, the inverse evolution, from state B
to state A, is not ruled out by any law governing the microscopic constituents
of matter. For instance, there is nothing in the laws governing the motion of
molecules that prevents them from gathering again in the left half of the box
after having uniformly filled the box for some time. But how is it possible that ir-
reversible behaviour emerges in systems whose components are governed by laws
which are not irreversible? One of the central problems of non-equilibrium SM
is to reconcile the asymmetric behavior of irreversible thermodynamic processes
with the underlying symmetric dynamics.

3.1.2 Aspirations and Limitations

This chapter presents a survey of recent work on the foundations of SM from
a systematic perspective. To borrow a metaphor of Gilbert Ryle’s, it tries to
map out the logical geography of the field, place the different positions and
contributions on this map, and indicate where the lines are blurred and blank
spots occur. Classical positions, approaches, and questions are discussed only
if they have a bearing on current foundational debates; the presentation of the
material does not follow the actual course of the history of SM, nor does it aim
at historical accuracy when stating arguments and positions.4

Such a project faces an immediate difficulty. Foundational debates in many
other fields can take as their point of departure a generally accepted formalism
and a clear understanding of what the theory is. Not so in SM. Unlike quantum
mechanics and relativity theory, say, SM has not yet found a generally accepted
theoretical framework, let alone a canonical formulation. What we find in SM
is a plethora of different approaches and schools, each with its own programme
and mathematical apparatus, none of which has a legitimate claim to be more
fundamental than its competitors.

For this reason a review of foundational work in SM cannot simply begin with
a concise statement of the theory’s formalism and its basic principles, and then
move on to the different interpretational problems that arise. What, then, is the
appropriate way to proceed? An encyclopaedic list of the different schools and
their programme would do little to enhance our understanding of the workings
of SM. Now it might seem that an answer to this question can be found in the
observation that across the different approaches equilibrium theory is better un-
derstood than non-equilibrium theory, which might suggest that a review should

3Different meanings are attached to the term ‘irreversible’ in different contexts, and even
within thermodynamics itself (see Denbigh 1989a and Uffink 2001, §3). I am not concerned
with these in what follows and always use the term in the sense introduced here.

4Those interested in the long and intricate history of SM are referred to Brush (1976), Sklar
(1993, Chapter 2), von Plato (1994) and Uffink (2007).
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begin with a presentation and discussion of equilibrium, and then move on to
examining non-equilibrium.

Although not uncongenial, this approach has two serious drawbacks. First,
it has the disadvantage that the discussion of specific positions (for instance the
ergodic approach) will be spread out over different sections, and as a result it be-
comes difficult to assess these positions as consistent bodies of theory. Second, it
creates the wrong and potentially misleading impression that equilibrium theory
can (or even should be) thought of as an autonomous discipline. By disconnect-
ing the treatment of equilibrium from a discussion of non-equilibrium we lose
sight of the question of how and in what way the equilibrium state constitutes
the final point towards which the dynamical evolution of a system converges.

In what follows I take my lead from the fact that all these different schools
(or at any rate those that I discuss) use (slight variants) of either of two theo-
retical frameworks, one of which can be associated with Boltzmann (1877) and
the other with Gibbs (1902), and can thereby classify different approaches as
either ‘Boltzmannian’ or ‘Gibbsian’. The reliance on a shared formalism (even
if the understanding of the formalism varies radically) provides the necessary
point of reference to compare these accounts and assess their respective merits
and drawbacks. This is so because the problems that I mentioned in §3.1.1 can
be given a precise formulation only within a particular mathematical framework.
Moreover it turns out that these frameworks give rise to markedly different char-
acterisations both of equilibrium and of non-equilibrium, and accordingly the
problems that beset accounts formulated within either framework are peculiar
to one framework and often do not have a counterpart in the other. And last
but not least, the scope of an approach essentially depends on the framework
in which it is formulated, and, as we shall see, there are significant differences
between two (I return to this issue in the conclusion).

Needless to say, omissions are unavoidable in a chapter-size review. I hope
that any adversity caused by these omissions is somewhat alleviated by the fact
that I clearly indicate at what point they occur and how the omitted positions
or issues fit into the overall picture; I also provide ample references for those who
wish to pursue the avenues I bypass.

The most notable omission concerns the macro theory at stake, thermody-
namics. The precise formulation of the theory, and in particular the Second Law,
raises important questions. These are beyond the scope of this review; Appendix
B provides a brief statement of the theory and flags the most important problems
that attach to it.

What is the relevant microphysical theory? A natural response would be
to turn to quantum theory, which is generally regarded as the currently best
description of micro entities. The actual debate has followed a different path.
With some rare exceptions, foundational debates in SM have been, and still
are, couched in terms of classical mechanics (which I briefly review in Appendix
A). I adopt this point of view and confine the discussion to classical statistical
mechanics. This, however, is not meant to suggest that the decision to discuss
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foundational issues in a classical rather than a quantum setting is unproblematic.
On the contrary, many problems that occupy centre stage in the debate over the
foundations of SM are intimately linked to aspects of classical mechanics and
it seems legitimate to ask whether, and, if so, how, these problems surface in
quantum statistical mechanics. (For a review of foundational issues in quantum
SM see Emch (2007)).

3.2 The Boltzmann Approach

Over the years Boltzmann developed a multitude of different approaches to SM.
However, contemporary Boltzmannians (references will be given below), take
the account introduced in Boltzmann (1877) and streamlined by Ehrenfest and
Ehrenfest (1912) as their starting point. For this reason I concentrate on this
approach, and refer the reader to Klein (1973), Brush (1976), Sklar (1993), von
Plato (1994), Cercignani (1998) and Uffink (2004, 2007) for a discussion of Boltz-
mann’s other approaches and their tangled history, and to de Regt (1996), Black-
more (1999) and Visser (1999) for discussions of Boltzmann’s philosophical and
methodological presuppositions at different times.

3.2.1 The Framework

Consider a system consisting of n particles with three degrees of freedom,5 which
is confined to a container of finite volume V and has total energy E.6 The sys-
tem’s fine-grained micro-state is given by a point in its 6n dimensional phase
space Γγ .7 In what follows we assume that the system’s dynamics is governed
by Hamilton’s equations of motion,8 and that the system is isolated from its
environment.9 Hence, the system’s fine-grained micro-state x lies within a finite
sub-region Γγ, a of Γγ , the so-called ‘accessible region’ of Γγ . This region is deter-
mined by the constraints that the motion of the particles is confined to volume
V and that the system has constant energy E—in fact, the latter implies that
Γγ, a entirely lies within a 6n − 1 dimensional hypersurface ΓE , the so-called
‘energy hypersurface’, which is defined by the condition H(x) = E, where H

5The generalisation of what follows to systems consisting of objects with any finite number
of degrees of freedom is straightforward.

6The version of the Boltzmann framework introduced in this subsection is the one favoured
by Lebowitz (1993a, 1993b, 1999), Goldstein (2001), and Goldstein and Lebowitz (2004). As
we shall see in the next subsection, some authors give different definitions of some of the central
concepts, most notably the Boltzmann entropy.

7The choice of the somewhat gawky notation ‘Γγ ’ will be justified in the next subsection.
8For brief review of classical mechanics see Appendix A. From a technical point of view the

requirement that the system be Hamiltonian is restrictive because the Boltzmannian machinery,
in particular the combinatorial argument introduced in the next subsection, can be used also
in some cases of non-Hamiltonian systems (for instance the Baker’s gas and the Kac ring).
However, as long as one believes that classical mechanics is the true theory of particle motion
(which is what we do in classical SM), these other systems are not relevant from a foundational
point of view.

9This assumption is not uncontroversial; in particular, it is rejected by those who advocate
an interventionist approach to SM; for a discussion see §3.3.5.2.
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is the Hamiltonian of the system and E the system’s total energy. The phase
space is endowed with a Lebesgue measure µ

L
, which induces a measure µ

L,E
on

the energy hypersurface via equation (3.46) in the Appendix. Intuitively, these
measures associate a ‘volume’ with subsets of Γγ and ΓE ; to indicate that this
‘volume’ is not the familiar volume in three dimensional physical space it is often
referred to as ‘hypervolume’.

Hamilton’s equations define a measure preserving flow φt on Γγ , meaning
that φt : Γγ → Γγ is a one-to-one mapping and µ

L
(R) = µ

L
(φt(R)) for all times

t and all regions R ⊆ Γγ , from which it follows that µ
L,E

(RE) = µ
L,E

(φt(RE))
for all regions RE ⊆ ΓE .

Let Mi, i = 1, ...,m, be the system’s macro-states. These are characterised by
the values of macroscopic variables such as local pressure, local temperature, and
volume.10 It is one of the basic posits of the Boltzmann approach that a system’s
macro-state supervenes on its fine-grained micro-state, meaning that a change
in the macro-state must be accompanied by a change in the fine-grained micro-
state (i.e. it is not possible, say, that the pressure of a system changes while its
fine-grained micro-state remains the same). Hence, to every given fine-grained
micro-state x ∈ ΓE there corresponds exactly one macro-state. Let us refer to
this macro-state as M(x).11 This determination relation is not one-to-one; in
fact many different x ∈ ΓE can correspond to the same macro-state (this will be
illustrated in detail in the next subsection). It is therefore natural to define

ΓMi := {x ∈ ΓE |Mi = M(x)}, i = 1, ...,m, (3.1)

the subset of ΓE consisting of all fine-grained micro-states that correspond to
macro-state Mi. The proposition that a system with energy E is in macro-state
Mi and the proposition that the system’s fine-grained micro-state lies within
ΓMi

always have the same truth value; for this reason, Mi and ΓMi
alike are

sometimes referred to as ‘macro-states’. However, at some points in what follows
it is important to keep the two separate and so I do not follow this convention;
I reserve the term ‘macro-state’ for the Mi’s and refer to the ΓMi ’s as ‘macro-
regions’.

The ΓMi
don’t overlap because macro-states supervene on micro-states: ΓMi

∩
ΓMj

= � for all i 6= j and i, j = 1, ...,m. For a complete set of macro-states the
ΓMi

also jointly cover the accessible region of the energy hypersurface: ΓM1 ∪

10Whether index i ranges over a set of finite, countably infinite, or uncountably infinite
cardinality depends both on the system and on how macro-states are defined. In what follows
I assume, for the sake of simplicity, that there is a finite number m of macro-states.

11This is not to claim that all macroscopic properties of a gas supervene on its mechanical
configuration; some (e.g. colour and smell) do not. Rather, it is an exclusion principle: if a
property does not supervene on the system’s mechanical configuration then it does not fall
within the scope of SM.
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... ∪ ΓMm = Γγ,a (where ‘∪’, ‘∩’ and ‘�’ denote set theoretic union, intersection
and the empty set respectively). In this case the ΓMi form a partition of Γγ, a.12

The Boltzmann entropy of a macro-state Mi is defined as13

S
B

(Mi) = k
B

log[µ
L,E

(ΓMi)], (3.2)

where k
B

is the so-called Boltzmann constant. For later discussions, in particular
for what Boltzmannians have to say about non-equilibrium and reductionism,
a small ‘cosmetic’ amendment is needed. The Boltzmann entropy as introduced
in equation (3.2) is a property of a macro-state. Since a system is in exactly
one macro-state at a time, the Boltzmann entropy can equally be regarded as a
property of a system itself. Let M(x(t)) be the system’s macro-state at time t
(i.e. M(x(t)) is the Mi in which the system’s state x happens to be at time t),
then the system’s Boltzmann entropy at time t is defined as

S
B

(t) := S
B

[M(x(t))]. (3.3)

By definition, the equilibrium state is the macro-state for which the Boltzmann
entropy is maximal. Let us denote that state by Meq (and, without loss of gen-
erality, choose the labelling of macro-states such that Meq = Mm). Justifying
this definition is one of the main challenges for the Boltzmannian approach, and
I return to this issue below in §3.2.7.

We now need to explain the approach to equilibrium. As phrased in the
introduction, this would amount to providing a mechanical explanation of the
Second Law of thermodynamics. It is generally accepted that this would be
aiming too high; the best we can hope for within SM is to get a justification of
a ‘probabilistic version’ of the Second Law, which I call ‘Boltzmann’s Law’ (BL)
(Callender 1999; Earman 2006, pp. 401–03):

Boltzmann’s Law: Consider an arbitrary instant of time t = t1 and assume that the
Boltzmann entropy of the system at that time, SB (t1), is far below its maximum value.
It is then highly probable that at any later time t2 > t1 we have SB (t2) ≥ SB (t1).14

Unlike the Second Law, which is a universal law (in that it does not allow for
exceptions), BL only makes claims about what is very likely to happen. Whether
it is legitimate to replace the Second Law by BL will be discussed in §3.2.8. Even
if this question is answered in the affirmative, what we expect from SM is an
argument for the conclusion that BL, which so far is just a conjecture, holds true

12Formally, {α1, ..., αk}, where αi ⊆ A for all i, is a partition of A iff α1 ∪ ... ∪ αk = A and
αi ∩ αj = � for all i 6= j and i, j = 1, ..., k.

13Goldstein (2001, p. 43), Goldstein and Lebowitz (2004, p. 57), Lebowitz (1993a, p. 34;
1993b, p. 5; 1999, p. 348).

14BL is sometimes referred to as the ‘statistical H-Theorem’ or the ‘statistical interpretation
of the H-theorem’ because in earlier approaches to SM Boltzmann introduced a quantity
H, which is basically equal to −SB , and aimed to prove that under suitable assumptions
it decreased monotonically. For discussions of this approach see the references cited at the
beginning of this subsection.
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in the relevant systems, and, if it does, an explanation of why this is so. In order
to address this question, we need to introduce probabilities into the theory to
elucidate the locution ‘highly probable’.

There are two different ways of introducing probabilities into the Boltzman-
nian framework. The first assigns probabilities directly to the system’s macro-
states; the second assigns probabilities to the system’s micro-state being in par-
ticular subsets of the macro-region corresponding to the system’s current macro-
state.15 For want of better terms I refer to these as ‘macro-probabilities’ and
‘micro-probabilities’ respectively. Although implicit in the literature, the distinc-
tion between macro-probabilities and micro-probabilities has never been articu-
lated, and it rarely, if ever, receives any attention. This distinction plays a central
rôle in the discussion both of BL and the interpretation of SM probabilities, and
it is therefore important to give precise definitions.

Macro-Probabilities: A way of introducing probabilities into the theory, in-
vented by Boltzmann (1877) and advocated since then by (among others) those
working within the ergodic programme (see §3.2.4), is to assign probabilities to
the macro-states Mi of the system. This is done by introducing the postulate
that the probability of a macro-state Mi is proportional to the measure of its
corresponding macro-region:

p(Mi) := c µ
L,E

(ΓMi), (3.4)

where c is a normalisation constant. I refer to this as the ‘Proportionality Postu-
late’ (PP). From this postulate and equation (3.2) it follows immediately that the
most likely macro-state is the macro-state with the highest Boltzmann entropy
and the one that occupies the largest part of the (accessible) phase space.

From this point of view it seems natural to understand the approach to
equilibrium as the evolution from an unlikely macro-state to a more likely macro-
state and finally to the most likely macro-state. If the system evolves from less
to more likely macro-states most of the time then we have justified BL. Whether
we have any reasons to believe that this is indeed the case will be discussed in
§3.2.3.2.

Micro-Probabilities: A different approach assigns probabilities to sets of micro-
states (rather than to macro-states) on the basis of the so-called statistical pos-
tulate (SP).16

Statistical Postulate: Let M be the macro-state of a system at time t. Then the prob-
ability at t that the fine-grained micro-state of the system lies in a subset A of ΓM
is

15This is not to say that these two kinds of probabilities are incompatible; in fact they could
be used in conjunction. However, this is not what happens in the literature.

16It is not clear where this postulate originates. It has recently—with some qualifications, as
we shall see—been advocated by Albert (2000), and also Bricmont (1996) uses arguments based
on probabilities introduced in this way; see also Earman (2006, p. 405), where this postulate
is discussed, but not endorsed. Principles very similar to this one have also been suggested by
various writers within the Gibbsian tradition; see §3.3.
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µL,E (A)/µL,E (ΓM ). (3.5)

With this assumption the truth of BL depends on the dynamics of the system,
because now BL states that the overwhelming majority of fine-grained micro-
states in any ΓMi (except the equilibrium macro-region) are such that they evolve
under the dynamics of the system towards some other region ΓMj

of higher
entropy. Hence, the truth of BL depends on the features of the dynamics. The
question is whether the systems we are interested in have this property. I come
back to this issue in §3.2.6.

3.2.2 The Combinatorial Argument
An important element in most presentations of the Boltzmann approach is what
is now known as the ‘combinatorial argument’. However, depending on how one
understands the approach, this argument is put to different uses—a fact that is
unfortunately hardly ever made explicit in the literature on the topic. I will first
present the argument and then explain what these different uses are.

Consider the same system of n identical particles as above, but now focus on
the 6 dimensional phase space of one of these particles, the so-called µ-space Γµ,
rather than the (6n dimensional) phase space Γγ of the entire system.17 A point
in Γµ denotes the particle’s fine-grained micro-state. It necessarily lies within a
finite sub-region Γµ, a of Γµ, the accessible region of Γµ. This region is determined
by the constraints that the motion of the particles is confined to volume V and
that the system as a whole has constant energy E. Now we choose a partition
ω of Γµ, a; that is, we divide Γµ, a into a finite number l of disjoint cells ωj ,
which jointly cover the accessible region of the phase space. The introduction of
a partition on a phase space is also referred to as ‘coarse-graining’. The cells are
taken to be rectangular with respect to the position and momentum coordinates
and of equal volume δω (this is illustrated in fig. 3.4).

The so-called coarse-grained micro-state of a particle is given by specifying
in which cell ωj its fine-grained micro-state lies.18

The micro-state of the entire system is a specification of the micro-state of
every particle in the system, and hence the fine-grained micro-state of the system
is determined by n labelled points in Γµ.19 The so-called coarse-grained micro-

17The use of the symbol µ both in ‘µ-space’ and to refer to the measure on the phase
space is somewhat unfortunate as they have nothing to do with each other. However, as this
terminology is widely used I stick to it. The distinction between µ-space and γ-space goes back
to Ehrenfest and Ehrenfest (1912); it is a pragmatic and not a mathematical distinction in
that it indicates how we use these spaces (namely to describe a single particle’s or an entire
system’s state). From a mathematical point of view both µ-space and γ-space are classical
phase spaces (usually denoted by Γ). This explains choice of the seemingly unwieldy symbols
Γµ and Γγ .

18There is a question about what cell a fine-grained micro-state belongs to if it lies exactly
on the boundary between two cells. One could resolve this problem by adopting suitable con-
ventions. However, it turns out later on that sets of measure zero (such as boundaries) can be
disregarded and so there is no need to settle this issue.

19The points are labelled in the sense that it is specified which point represents the state of
which particle.
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ψ0

Γµ,a

q

p

ω3ω2ω1

Fig. 3.4. Partitioning (or coarse-graining) of the phase space

state is a specification of which particle’s state lies in which cell of the partition ω
of Γµ, a; for this reason the coarse-grained micro-state of a system is also referred
to as an ‘arrangement’.

The crucial observation now is that a number of arrangements correspond
to the same macro-state because a system’s macro-properties are determined
solely by the number of particles in each cell, while it is irrelevant exactly which
particle is in which cell. For instance, whether particle number 5 and particle
number 7 are in cells ω1 and ω2 respectively, or vice versa, makes no difference
to the macro-properties of the system as a whole because these do not depend
on which particle is in which cell. Hence, all we need in order to determine a
system’s macro-properties is a specification of how many particles there are in
each cell of the coarse-grained µ-space. Such a specification is called a ‘distri-
bution’. Symbolically we can write it as a tuple D = (n1, . . . , nl), meaning the
distribution comprising n1 particles in cell ω1, etc. The nj are referred to as
‘occupation numbers’ and they satisfy the condition

∑l
j=1 nj = n.

For what follows it is convenient to label the different distributions with a
discrete index i (which is not a problem since for any given partition ω and
particle number n there are only a finite number of distributions) and denote
the ith tuple by Di. The beginning of such labelling could be, for instance,
D1 = (n, 0, ...., 0), D2 = (n− 1, 1, 0, ..., 0), D3 = (n− 2, 1, 1, 0, ..., 0), etc.

How many arrangements are compatible with a given distribution D? Some
elementary combinatorial considerations show that

G(D) :=
n!

n1! . . . nl!
(3.6)

arrangements are compatible with a given distribution D (where ‘!’ denotes fac-
torials, i.e. k! := k(k − 1) ... 1, for any natural number k and 0! := 1). For this
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reason a distribution conveys much less information than an arrangement.
Each distribution corresponds to a well-defined region of Γγ , which can be

seen as follows. A partition of Γγ is introduced in exactly the same way as above.
In fact, the choice of a partition of Γµ induces a partition of Γγ because Γγ is
just the Cartesian product of n copies of Γµ. The coarse-grained state of the
system is then given by specifying in which cell of the partition its fine-grained
state lies. This is illustrated in fig. 3.5 for the fictitious case of a two particle
system, where each particle’s µ-space is one dimensional and endowed with a
partition consisting of four cells ω1, ..., ω4. (This case is fictitious because in
classical mechanics there is no Γµ with less than two dimensions. I consider this
example for ease of illustration; the main idea carries over to higher dimensional
spaces without difficulties.)

} Γµ,a

ω1 ω2 ω3 ω4

Γµ1

Γµ2

ω4

ω4ω3

ω3
ω1

ω1

0 ω2

ω2

Fig. 3.5. Specification of coarse-grained state of a system

This illustration shows that each distribution D corresponds to a particular
part of Γγ, a; and it also shows the important fact that parts corresponding
to different distributions do not overlap. In fig. 3.5, the hatched areas (which
differ by which particle is in which cell) correspond to the distribution (1, 0, 0, 1)
and the dotted area (where both particles are in the same cell) correspond to
(0, 2, 0, 0). Furthermore, we see that the hatched area is twice as large as the
dotted area, which illustrates an important fact about distributions to which we
now turn.

From the above it becomes clear that each point x in Γγ, a corresponds to ex-
actly one distribution; call this distribution D(x). The converse of this, of course,
fails since in general many points in Γγ, a correspond to the same distribution
Di. These states together form the set ΓDi :

ΓDi := {x ∈ Γγ |D(x) = Di}. (3.7)

From equations (3.6) and (3.7), together with the assumption that all cells
have the same size δω (in the 6 dimensional µ-space), it follows that

µ
L

(ΓDi) = G(Di) (δω)n, (3.8)
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Next we want to know the distribution D for which G(D), and with it
µ
L

(ΓDi), assume their maximum. To solve this problem we make two crucial
sets of assumptions, one concerning the energy of the system and one concerning
the system’s size (their implications will be discussed in §3.2.7).

First, we assume that the energy of a particle only depends on which cell
ωj it is in, but not on the states of the other particles; that is, we neglect the
contribution to the energy of the system that stems from interactions between
the particles. We then also assume that the energy Ej of a particle whose fine-
grained state lies in cell ωj only depends on the index j, i.e. on the cell in which
the state is, and not on its exact location within the cell. This can be achieved, for
instance, by taking Ej to be the average energy in ωj . Under these assumptions,
the total energy of the system is given by

∑l
j=1 njEj .

Second, we assume that the system as a whole is large, and that there are
many particles in each individual cell: (nj � 1 for all j). These assumptions
allows us to use Stirling’s formula to approximate factorials:

n! ≈
√

2πn
(
n

e

)n
(3.9)

Now we have to maximise G(D) under the ‘boundary conditions’ that the
number n of particles is constant (n =

∑
j nj) and that the total energy E of

the system is constant (E =
∑
j njEj). Under these assumptions one can then

prove (using Stirling’s approximation and the Lagrange multiplier method) that
G(D) reaches its maximum for

nj = α exp(−βEj), (3.10)

which is the (discrete) Maxwell-Boltzmann distribution, where α and β are con-
stants depending on the nature of the system (Ehrenfest and Ehrenfest 1912, p.
30; Tolman 1938, Chapter 4).

Before we turn to a discussion of the significance of these calculations, some-
thing needs to be said about observable quantities. It is obvious from what has
been said so far that observable quantities are averages of the form

〈f〉 :=
n∑
j=1

njfωj , (3.11)

where f is a function of position and momentum of a particle, and fωj is the
value of the function in cell ωj (where, as in the case of the energy, it is assumed
that the values of f depend only on the cell ωj but not of the particle’s location
within the cell; i.e. it is assumed that f does not fluctuate on a scale of δω). In
particular one can calculate the pressure of a gas in equilibrium in this way.20

20In practice this is not straightforward. To derive the desired results, one first has to express
the Maxwell-Boltzmann distribution in differential form, transform it to position and momen-
tum coordinates and take a suitable continuum limit. For details see, for instance, Tolman
(1938, Chapter 4).
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What is the relevance of these considerations for the Boltzmann approach?
The answer to this question is not immediately obvious. Intuitively one would
like to associate the ΓDi with the system’s macro-macro regions ΓMi

. However,
such an association is undercut by the fact that the ΓDi are 6n dimensional
objects, while the ΓMi , as defined by equation (3.1), are subsets of the 6n − 1
dimensional energy hypersurface ΓE .

Two responses to this problem are possible. The first is to replace the defi-
nition of a macro-region given in the previous subsection by one that associates
macro-states with 6n dimensional rather than 6n − 1 dimensional parts of Γγ ,
which amounts to replacing equation (3.1) by Γ′Mi

:= {x ∈ Γγ |Mi = M(x)}
for all i = 1, ...,m. Macro-states thus defined can then be identified with the re-
gions of Γγ corresponding to a given distribution: Γ′Mi

= ΓDi for all i = 1, ...,m,
where m now is the number of different distributions.

This requires various adjustments in the apparatus developed in §3.2.1, most
notably in the definition of the Boltzmann entropy. Taking the lead from the
idea that the Boltzmann entropy is the logarithm of the hypervolume of the part
of the phase space associated with a macro-state we have

S′
B

(Mi) := k
B

log[µ
L

(Γ′Mi
)], (3.12)

and with equation (3.8) we get

S′
B

(Mi) = k
B

log[G(Di)] + k
B
n log(δω). (3.13)

Since the last term is just an additive constant it can be dropped (provided we
keep the partition fixed), because ultimately we are interested in entropy differ-
ences rather than in absolute values. We then obtain S′

B
(Mi) = k

B
log[G(Di)],

which is the definition of the Boltzmann entropy we find in Albert (2000, p. 50).
In passing it is worth mentioning that S′

B
can be expressed in alternative

ways. If we plug equation (3.6) into equation (3.13) and take into account the
above assumption that all nj are large (which allows us to use Stirling’s approx-
imation) we obtain (Tolman 1938, Chapter 4):

S′
B

(Mi) ≈ −kB
∑
j

nj log nj + c(n, δω), (3.14)

where the nj are the occupation numbers of distribution Di and c(n, δω) is a
constant depending on n and δω. Introducing the quotients pj := nj/n and
plugging them into the above formula we find

S′
B

(Mi) ≈ −nkB
∑
j

pj log pj + c̃(n, δω), (3.15)

where, again, c̃(n, δω) is a constant depending on n and δω.21 The quotients
pi are often said to be the probability of finding a randomly chosen particle in

21This expression for the Boltzmann entropy is particularly useful because, as we shall see
in §3.3.6.1,

P
j pj log pj is a good measure for the ‘flatness’ of the distribution pj .
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cell ωi. This is correct, but it is important not to confuse this probability, which
is simply a finite relative frequency, with the probabilities that occur in BL. In
fact, the two have nothing to do with each other.

What are the pros and the cons of this first response? The obvious advantage
is that it provides an explicit construction of the macro-regions Γ′Mi

, and that
this construction gives rise to a definition of the Boltzmann entropy which allows
for easy calculation of its values.

The downside of this ‘6n dimensional approach’ is that the macro-regions Γ′Mi

almost entirely consist of micro-states which the system never visits (remember
that the motion of the system’s micro-state is confined to the 6n−1 dimensional
energy hypersurface). This is a problem because it is not clear what relevance
considerations based on the hypervolume of certain parts of the phase space have
if we know that the system’s actual micro-state only ever visits a subset of these
parts which is of measure zero. Most notably, of what relevance is the observation
that the equilibrium macro-region has the largest (6n dimensional) hypervolume
if the system can only ever access a subset of measure zero of this macro-region?
Unless there is a relation between the 6n−1 dimensional hypervolume of relevant
parts of the energy hypersurface and the 6n dimensional hypervolume of the parts
of Γγ in which they lie, considerations based on the 6n dimensional hypervolume
are inconsequential.22

The second response to the above problem leaves the definition of macro-
regions as subsets of the 6n− 1 dimensional energy hypersurface unaltered and
endeavours to ‘translate’ the results of the combinatorial argument back into
the original framework (as presented in §3.2.1). This, as we shall see, is possible,
but only at the cost of introducing a further hypothesis postulating a relation
between the values of the 6n and the 6n−1 dimensional hypervolumes of relevant
parts of Γγ .

The most important achievement of the combinatorial argument is the con-
struction of the ΓDi , the regions in phase space occupied by micro-states with
the same macro-properties. Given that the original framework does not provide
a recipe of how to construct the macro-regions, we want to make use of the ΓDi
to define the ΓMi . A straightforward way to obtain the ΓMi from the ΓDi is
intersect the ΓDi with ΓE :23

22Moreover, the ‘6n dimensional approach’ renders the ‘orthodox’ account of SM probability,
the time average interpretation (see §3.2.4), impossible. This interpretation is based on the
assumption that the system is ergodic on the union of the macro-regions, which is impossible
if macro regions are 6n dimensional.

23This construction implicitly assumes that there is a one-to-one correspondence between
distributions and macro-states. This assumption is too simplistic in at least two ways. First,
ΓDi ∩ΓE may be empty for some i. Second, characteristically several distributions correspond
to the same macro-state in that the macroscopic parameters defining the macro-state assume
the same values for all of them. These problems can easily be overcome. The first can be solved
by simply deleting empty Mi from the list of macro-regions; the second can be overcome by
intersecting ΓE not with each individual ΓDi , but instead with the union of all ΓDi that
correspond to the same macro-state. Since this would not alter any of the considerations to
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ΓMi := ΓDi ∩ ΓE . (3.16)

How can we calculate the Boltzmann entropy of the macro-states correspond-
ing to macro-regions thus defined? The problem is that in order to calculate the
Boltzmann entropy of these states we need the 6n− 1 dimensional hypervolume
of the ΓMi

, but what we are given (via equation (3.8)) is the the 6n dimensional
hypervolume of the ΓDi , and there is no way to compute the former on the basis
of the latter.

The way out of this impasse is to introduce a new postulate, namely that the
6n − 1 dimensional hypervolume of the ΓMi

is proportional to 6n dimensional
hypervolume of the ΓDi : µL,E (ΓMi

) = k
v
µ
L

(ΓDi), where k
v

is a proportionality
constant. It is plausible to assume that this postulate is at least approximately
correct because the energy hypersurface of characteristic SM systems is smooth
and does not oscillate on the scale of δω. Given this, we have

S
B

(Mi) = S′
B

(Mi) + k
B

log(k
v
); (3.17)

that is, S
B

and S′
B

differ only by an additive constant, and so equation (3.13) as
well as equations (3.14) and (3.15) can be used to determine the values of S

B
.

In what follows I assume that this ‘proportionality assumption’ holds wa-
ter and that the Boltzmann entropy of a macro-state can be calculated using
equation (3.17).

3.2.3 Problems and Tasks
In this subsection I point out what the issues are that the Boltzmannian needs
to address in order to develop the approach introduced so-far into a full-fledged
account of SM. Needless to say, these issues are not independent of each other
and the response to one bears on the responses to others.

3.2.3.1 Issue 1: The Connection with Dynamics The Boltzmannian account as
developed so far does not make reference to dynamical properties of the system
other than the conservation of energy, which is a consequence of Hamilton’s
equations of motion. But not every dynamical system—not even if it consists of
a large number of particles—behaves thermodynamically in that the Boltzmann
entropy increases most of the time.24 For such behaviour to take place it must
be the case that a system, which is initially prepared in any low entropy state,
eventually moves towards the region of Γγ associated with equilibrium. This is
illustrated in fig. 3.6 (which is adapted from Penrose 1989, p. 401 and p. 407).
But this need not be so. If, for instance, the initial low entropy macro-region is
separated from the equilibrium region by an invariant surface, then no approach
to equilibrium takes place. Hence, the question is: of what kind the dynamics
has to be for the system to behave thermodynamically.

follow, I disregard this issue henceforth.
24Lavis (2005, pp. 254–61) criticises the standard preoccupation with ‘local’ entropy increase

as misplaced and suggests that what SM should aim to explain is so-called thermodynamic-like
behaviour, namely that the Boltzmann entropy be close to its maximum most of the time.



114 RECENT WORK ON THE FOUNDATIONS OF STATISTICAL MECHANICS

ΓDeq

Γγ,a

Fig. 3.6. Trajectory from a low entropy state to a region associated with equi-
librium

A common response begins by pointing out that equilibrium is not only as-
sociated with the largest part of Γγ ; in fact, the equilibrium macro-region is
enormously larger than any other macro-region (Ehrenfest and Ehrenfest 1912,
p. 30). Numerical considerations show that the ratio ΓMeq

/ΓM , where M is a typ-
ical non-equilibrium distribution, is of the magnitude of 10n (Goldstein 2001, 43;
Penrose 1989, p. 403). If we now assume that the system’s state drifts around
more or less ‘randomly’ on Γγ, a then, because ΓMeq

is vastly larger than any
other macro region, sooner or later the system will reach equilibrium and stay
there for at least a very long time. The qualification ‘more or less randomly’ is
essential. If the motion is too regular, it is possible that the system successfully
avoids equilibrium positions. But if the state wanders around on the energy hy-
persurface randomly, then, the idea is, it simply cannot avoid moving into the
region associated with equilibrium sooner or later.

Plausible as it may seem, this argument has at best heuristic value. What
does it mean for a system to drift around randomly? In particular in the context
of Hamiltonian mechanics, a deterministic theory, the notion of drifting around
randomly is in need of explanation: what conditions does a classical system
have to satisfy in order to possess ‘random properties’ sufficient to warrant the
approach to equilibrium?

3.2.3.2 Issue 2: Introducing and Interpreting Probabilities There are several
different (albeit interrelated) issues that must be addressed in order to under-
stand the origin and meaning of probabilities in SM, and all of them are inti-
mately connected to issue 1. The first of these is the problem of interpretation.

The interpretation of SM probabilities. How are SM probabilities to be un-
derstood? Approaches to probability can be divided into two broad groups.25

First, epistemic approaches take probabilities to be measures for degrees of be-
lief. Those who subscribe to an objective epistemic theory take probabilities to

25What follows is only the briefest of sketches. Those options that have been seriously pursued
within SM will be discussed in more detail below. For an in-depth discussion of all these
approaches see, for instance, Howson (1995), Gillies (2000), Galavotti (2005) and Mellor (2005).
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be degrees of rational belief, whereby ‘rational’ is understood to imply that given
the same evidence all rational agents have the same degree of belief in any propo-
sition. This is denied by those who hold a subjective epistemic theory, regarding
probabilities as subjective degrees of belief that can differ between persons even
if they are presented with the same body of evidence.26 Second, ontic approaches
take probabilities to be part of the ‘furniture of the world’. On the frequency ap-
proach, probabilities are long run frequencies of certain events. On the propensity
theory, probabilities are tendencies or dispositions inherent in objects or situa-
tions. The Humean best systems approach—introduced in Lewis (1986)—views
probability as defined by the probabilistic laws that are part of that set of laws
which strike the best balance between simplicity, strength and fit.27 To which of
these groups do the probabilities introduced in the Boltzmannian scheme belong?

We have introduced two different kinds of probabilities (micro and macro),
which, prima facie, need not be interpreted in the same way. But before delving
into the issue of interpretation, we need to discuss whether these probabilities
can, as they should, explain Boltzmann’s law. In fact, serious problems arise for
both kinds of probabilities.

Macro-Probabilities. Boltzmann suggested that macro-probabilities explain
the approach to equilibrium: if the system is initially prepared in an improbable
macro-state (i.e. one far away from equilibrium), it will from then on evolve
towards more likely states until it reaches, at equilibrium, the most likely state
(1877, p. 165). This happens because Boltzmann takes it as a given that the
system ‘always evolves from an improbable to a more probable state’ (ibid., p.
166).

This assumption is unwarranted. eq.3.4 assigns unconditional probabilities
to macro-states, and as such they do not imply anything about the succession
of states, let alone that ones of low probability are followed by ones of higher
probability. As an example consider a brassed die; the probability to get a ‘six’
is 0.25 and all other numbers of spots have probability 0.15. Can we then infer
that after, say, a ‘three’ we have to get a ‘six’ because the six is the most likely
event? Of course not; in fact, we are much more likely not to get a ‘six’ (the
probability for non-six is 0.75, while the one for six is 0.25). A further (yet related)
problem is that BL makes a statement about a conditional probability, namely
the probability of the system’s macro-state at t2 being such that S

B
(t2) > S

B
(t1),

given that the system’s macro-state at the earlier time t1 was such that its
Boltzmann entropy was S

B
(t1). The probabilities of PP (see equation (3.4)) are

not of this kind, and they cannot be turned into probabilities of this kind by using
the elementary definition of conditional probabilities, p(B|A) = p(B&A)/p(A),
for reasons pointed out by Frigg (2007a). For this reason non-equilibrium SM

26‘Subjective probability’ is often used as a synonym for ‘epistemic probability’. This is
misleading because not all epistemic probabilities are also subjective. Jaynes’s approach to
probabilities, to which I turn below, is a case in point.

27Sometimes ontic probabilities are referred to as ‘objective probabilities’. This is misleading
because epistemic probabilities can be objective as well.
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cannot be based on the PP, no matter how the probabilities in it are interpreted.
However, PP does play a rôle in equilibrium SM. It posits that the equilibrium

state is the most likely of all states and hence that the system is most likely to be
in equilibrium. This squares well with an intuitive understanding of equilibrium
as the state that the system reaches after a (usually short) transient phase, after
which it stays there (remember the spreading gas in the introduction). Granting
that, what notion of probability is at work in PP? And why, if at all, is this
postulate true? That is, what facts about the system make it the case that the
equilibrium state is indeed the most likely state? These are the questions that
Boltzmannian equilibrium SM has to answer, and I will turn to these in §3.2.4.

Micro-Probabilities. The conditional probabilities needed to explain BL can
be calculated on the basis of SP (see equation (3.5)).28 Let M be the macro-
state of a system at time t. For every point x ∈ ΓM there is a matter of fact
(determined by the Hamiltonian of the system) about whether x evolves into a
region of higher or lower entropy or stays at the same level of entropy. Call ΓM+ ,
ΓM− , and ΓM0 the sets of those points of ΓM that evolve towards a region of
higher, lower, or same entropy respectively (hence ΓM = ΓM+ ∪ ΓM− ∪ ΓM0).
The probability for the system’s entropy to either stay the same or increase as
time evolves is µ(ΓM+ ∪ ΓM0)/µ(ΓM ). Hence, it is a necessary and sufficient
condition for BL to be true that µ(ΓM+ ∪ ΓM0) � µ(ΓM−) for all micro-states
M except the equilibrium state itself (for which, trivially, µ(ΓM+) = 0). BL then
translates into the statement that the overwhelming majority of micro-states in
every macro-region ΓM except ΓMeq

evolve under the dynamics of the system
towards regions of higher entropy.

This proposal is seriously flawed. It turns out that if the system, in macro-
state M , is very likely to evolve towards a macro-state of higher entropy in
the future (which we want to be the case), then, because of the time reversal
invariance of the underlying dynamics, the system is also very likely to have
evolved into the current macro-state M from another macro-state M ′ of higher
entropy than M (see Appendix A for a discussion of time reversal invariance).
So whenever the system is very likely to have a high entropy future it is also very
likely to have a high entropy past; see Albert (2000, Chapter 4) for a discussion of
this point. This stands in stark contradiction with both common sense experience
and BL itself. If we have a lukewarm cup of coffee on the desk, SP makes the
radically wrong retrodiction that is overwhelmingly likely that five minutes ago
the coffee was cold (and the air in the room warmer), but then fluctuated away
from equilibrium to become lukewarm and five minutes from now will be cold
again. However, in fact the coffee was hot five minutes ago, cooled down a bit
and will have further cooled down five minutes from now.

This point is usually attributed to the Ehrenfests. It is indeed true that the
Ehrenfests (1912, pp. 32–34) discuss transitions between different entropy levels

28To keep things simple I assume that there corresponds only one macro-state to a given
entropy value. If this is not the case, exactly the same calculations can be made using the
union of the macro-regions of all macro-states with the same entropy.
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and state that higher-lower-higher transitions of the kind that I just mentioned
are overwhelmingly likely. However, they base their statement on calculations
about a probabilistic model, their famous urn-model, and hence it is not clear
what bearing, if any, their considerations have on deterministic dynamical sys-
tems; in fact, some of the claims they make are not in general true in conservative
deterministic systems.

Nor is it true that the objection to the proposal follows directly from the
time reversal invariance of the underlying dynamics on the simple grounds that
everything that can happen in one direction of time can also happen in the
other direction. However, one can indeed prove that the statement made in the
last paragraph about entropic behaviour is true in conservative deterministic
dynamical systems, if SP is assumed (Frigg 2007b). Hence there is a serious
problem, because the micro-dynamics and (SP) lead us to expect the system to
behave in a way that is entirely different from how the system actually behaves
and from what the laws of thermodynamics lead us to expect. The upshot is
that the dynamics at the micro-level and SP by itself do not underwrite the
asymmetrical behaviour that we find at the macro level, and which is captured
by BL. Hence the question is: where then does the irreversibility at the macro
level come from, if not from the dynamical laws governing the micro constituents
of a system? I turn to a discussion of this question in §3.2.5.

3.2.3.3 Issue 3: Loschmidt’s Reversibility Objection As we observed in the in-
troduction, the world is rife with irreversible processes; that is, processes that
happen in one temporal direction but not in the other. This asymmetry is built
into the Second Law of thermodynamics. As Loschmidt pointed out in contro-
versy with Boltzmann (in the 1870s), this does not sit well with the fact that
classical mechanics is time-reversal invariant. The argument goes as follows:29

Premise 1 : It follows from the time reversal invariance of classical mechanics
that if a transition from state x

i
to state x

f
(‘i’ for ‘initial’ and ‘f ’ for ‘final’) in

time span ∆ is possible (in the sense that there is a Hamiltonian that generates
it), then the transition from state Rx

f
to state Rx

i
in time span ∆ is possible as

well, where R reverses the momentum of the instantaneous state of the system
(see Appendix A for details).

Premise 2 : Consider a system in macro-state M with Boltzmann entropy
S
B

(M). Let RM be the reversed macro-state, i.e. the one with macro-region
ΓRM := {x ∈ Γ|Rx ∈ ΓM} (basically we obtain RM by reversing the momenta
of all particles at all points in ΓM ). Then we have S

B
(M) = S

B
(RM); that is,

the Boltzmann entropy is invariant under R.
Now consider a system that assumes macro-states Mi and Mf , at ti and t

f

respectively, where Si := S
B

(Mi) < S
B

(Mf ) =: Sf and t
i
< t

f
. Furthermore

assume that the system’s fine-grained state is x
i
∈ ΓMi

at t
i

and is x
f
∈ ΓMf

at t
f
, and that the transition from x

i
to x

f
during the interval ∆ := t

f
− t

i

29The following is a more detailed version of the presentation of the argument in Ehrenfest
and Ehrenfest (1907, p. 311).
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is allowed by the underlying dynamics. Now, by Premise 1 the system is time
reversal invariant and hence the transition from Rx

f
to Rx

i
during ∆ is possible

as well. Because, by Premise 2, S
B

is invariant under R, we have to conclude
that the transition from Sf to Si is possible as well. This contradicts the Second
Law of thermodynamics which says that high to low entropy transitions cannot
occur. So we are in the awkward position that a transition that is ruled out by
the macro theory is allowed by the micro theory which is supposed to account
for why the macro laws are the way they are.

What are the consequences of this for the Boltzmannian? The answer to this
question depends on what one sees as the aim of SM. If a justification of the
(exact) Second Law is the aim, the objection is devastating. However, we have
observed before that this would be asking for too much and what we should
reasonably expect is an argument for the validity of BL rather than the Second
Law. But BL is not obviously contradicted by the reversibility objection. So the
question is whether the reversibility objection undermines BL, and if so in what
way?

3.2.3.4 Issue 4: Zermelo’s Recurrence Objection Poincaré’s recurrence theo-
rem says, roughly speaking, that for the systems at stake in SM, almost every
initial condition will, after some finite time (the Poincaré recurrence time), re-
turn to a state that is arbitrarily close to its initial state (see Appendix A for
details). As Zermelo pointed out in 1896, this has the unwelcome consequence
that entropy cannot keep increasing all the time; sooner or later there will be a
period of time during which the entropy of the system decreases. For instance,
if we consider again the initial example of the gas (fig. 3.1), it follows from
Poincaré’s recurrence theorem that there is a future instant of time at which the
gas returns by itself to the left half of the container. This stands in contradiction
to the second law.

A first attempt to dismiss this objection points to the fact that the time
needed for this to happen in a realistic system is several times the age of the uni-
verse. In fact Boltzmann himself estimated that the time needed for a recurrence
to occur for a system consisting of a cubic centimetre of air was about 101019

seconds (Uffink 2007, p. 984). Hence, we never observe such a recurrence, which
renders the objection irrelevant.

This response misses the point. The objection is not concerned with whether
we ever experience a decrease of entropy; the objection points to the fact that
there is an in-principle incompatibility between the Second Law and the be-
haviour of classical mechanical systems. This is, of course, compatible with saying
that there need not be any conflict with actual experience.

Another response is to let the number of particles in the system tend to-
wards infinity (which is the basic idea of the so-called thermodynamic limit;
see §3.3.3.2). In this case the Poincaré recurrence time becomes infinite as well.
However, actual systems are not infinite and whether such limiting behaviour
explains the behaviour of actual systems is at least an open question. So there
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is no easy way around the objection. But as with the reversibility objection, the
real issue is whether there is a contradiction between recurrence and BL rather
than the (exact) Second Law.

3.2.3.5 Issue 5: The Justification of Coarse-Graining The introduction of a
finite partition on the system’s µ-space is crucial to the combinatorial argument.
Only with respect to such a partition can the notion of a distribution be intro-
duced and thereby the Maxwell-Boltzmann equilibrium distribution be derived.
Hence the use of a partition is essential. However, there is nothing in classi-
cal mechanics itself that either suggests or even justifies the introduction of a
partition. How, then, can coarse-graining be justified?

This question is further aggravated by the fact that the success of the com-
binatorial argument crucially depends on the choice of the right partition. The
Maxwell-Boltzmann distribution is derived under the assumption that n is large
and ni � 1, i = 1, ..., l. This assumption is false if we choose too fine a partition
(for instance one for which l ≥ n), in which case most ni are small.

There are also restrictions on what kinds of partitions one can choose. It turns
out that the combinatorial argument only works if one partitions phase space.
Boltzmann first develops the argument by partitioning the particles’ energy lev-
els and shows that in this case the argument fails to reproduce the Maxwell-
Boltzmann distribution (1877, pp. 168-90). The argument yields the correct re-
sult only if the phase space is partitioned along the position and momentum
axes into cells of equal size.30 But why is the method sensitive to such choices
and what distinguishes ‘good’ from ‘bad’ partitions (other than the ability to
reproduce the correct distribution law)?

3.2.3.6 Issue 6: Limitations of the Formalism When deriving the Maxwell-
Boltzmann distribution in §3.2.2, we made the assumption that the energy of a
particle depends only on its coarse-grained micro-state, i.e. on the cell in which
its fine-grained micro-state comes to lie, which (trivially) implies that a par-
ticle’s energy does not depend on the other particles’ states. This assumption
occupies centre stage in the combinatorial argument because the derivation of
the Maxwell-Boltzmann distribution depends on it. However, this is true only if
there is no interaction between the particles; wherever there is an interaction po-
tential between the particles of a system the argument is inapplicable. Hence, the
only system satisfying the assumptions of the argument is the ideal gas (which,
by definition, consists of non-interacting particles).

This restriction is severe. Although some real gases approximately behave like
ideal gases under certain circumstances (basically: if the density is low), most
systems of interest in statistical mechanics cannot be regarded as ideal gases.
The behaviour both of solids and liquids (and even of dense gases) essentially
depends on the interaction between the micro-constituents of the system, and a

30Strictly speaking this requirement is a bit too stringent. One can choose a different (but
constant) cell size along each axis and still get the right results (Boltzmann 1877, p. 190).
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theory that is forced to idealise these interactions away (should this be possible
at all) is bound to miss out on what is essential to how real systems behave.31

A further limitation is that the argument assumes that all the particles of
the system have the same phase space, which essentially amounts to assuming
that we are dealing with a system of identical objects. A paradigm example for
such a system is a monoatomic gas (e.g. helium). But many systems are not of
that kind; most solids, for instance, contain constituents of different types.

Finally, the formalism remains silent about what happens when systems in-
teract with their environments. In practice many systems are not completely
isolated and one would like the formalism to cover at least selected kinds of
interactions.

Hence, the question is whether the approach can be generalised so that it
applies to the cases that, as it stands, are not within its scope.

3.2.3.7 Issue 7: Reductionism There is a consensus that the principal aim of
SM is to account for the thermodynamic behaviour of a macroscopic system
in terms of the dynamical laws governing its micro constituents; and it is a
measure of the success of SM how much of TD it is able to reproduce (see
§3.1.1). In philosophical parlance, the aim of SM is to reduce TD to mechanics
plus probabilistic assumptions.

What does such a reduction involve? How do the micro and the macro level
have to relate to one another in order for it to be the case that the former reduces
to the latter? The term ‘reduction’ has been used in many different senses and
there is no consensus over what exactly it involves to reduce one domain to
another. So we need to specify what exactly is asserted when SM is claimed to
reduce TD and to discuss to what extent this assertion is true.

A particular problem for reductionism is that idealisations play a constitutive
rôle in SM (Sklar 2000, p. 740). Depending on which approach we favour, we work
with, for example: non-interacting particles or hard spheres in a box instead
of ‘realistic’ interactions; or systems of infinite volume and an infinite number
of particles; or vanishing densities; or processes that are infinitely long. These
idealisations are more than the ‘usual’ inexactness that is unavoidable when
applying a general theory to the messy world; they are essential to SM since the
desired results usually cannot be derived without them. What is the status of
results that only hold in highly idealised systems (and often are know to fail in
more realistic systems) and what rôle can they play in a reduction of TD to SM?

3.2.3.8 Plan §3.2.4 presents and discusses the ‘orthodox’ response to Issues 1
and 2, which is based on ergodic theory and the use of macro-probabilities. In
§3.2.5 and § I discuss the currently most influential alternative answer to these
issues, which invokes the so-called Past Hypothesis and uses micro-probabilities.
Issues 3 and 4 are addressed in §3.2.6.3. In §3.2.7 I deal with Issues 5 and 6, and
Issue 7 is discussed in §3.2.8.

31A discussion of this point can be found, for instance, in Schrödinger (1952, Chapter 1).
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3.2.4 The Ergodicity Programme
The best-known response to Issues 1 and 2, if macro probabilites are considered,
is based on the notion of ergodicity. For this reason this subsection begins with an
introduction to ergodic theory, then details how ergodicity is supposed to address
the problems at stake, and finally explains what difficulties this approach faces.

3.2.4.1 Ergodic Theory Modern ergodic theory is developed within the setting
of dynamical systems theory.32 A dynamical system is a triplet (X,λ, φt), where
X is a state space endowed with a normalised measure λ (i.e. λ(X) = 1) and
φt : X → X, where t is a real number, is a one-parameter family of measure
preserving automorphisms (i.e. λ(φt(A)) = λ(A) for all measurable A ⊆ X
and for all t); the parameter t is interpreted as time. The Hamiltonian systems
considered so far are dynamical systems in this sense if the following associations
are made: X is the accessible part of the energy hypersurface; λ is the standard
measure on the energy hypersurface, renormalised so that the measure of the
accessible part is one; φt is the Hamiltonian flow.

Now let f(x) be any complex-valued and Lebesgue-integrable function defined
on X. Its space mean f̄ (sometimes also ‘phase space average’ or simply ‘phase
average’) is defined as

f̄ :=
∫
X

f(x)dλ, (3.18)

and its time mean f∗ (sometimes also ‘time average’) at x0 ∈ X is defined as

f∗(x0) = lim
τ→∞

(1/τ)
∫ t0+τ

t0

f [φt(x0)]dt. (3.19)

The question is whether the time mean exists; the Birkhoff theorem asserts that
it does:

Birkhoff Theorem. Let (X,λ, φt) be a dynamical system and f a complex-valued, λ-
integrable function on X. Then the time average f∗(x0)
(i) exists almost everywhere (i.e. everywhere except, perhaps, on a set of measure zero);
(ii) is invariant (i.e. does not depend on the initial time t0): f∗(x0) = f∗(φt(x0)) for
all t;
(iii) is integrable:

R
X
f∗(x0)dλ =

R
X
f(x)dλ.

We can now state the central definition:

Ergodicity. A dynamical system is ergodic iff for every complex-valued, λ-integrable
function f on X we have f∗(x0) = f̄ almost everywhere; that is, everywhere except,
perhaps, on a set of measure zero.

Two consequences of ergodicity are worth emphasising. First, if a system is er-
godic, then for almost all trajectories, the fraction of time a trajectory spends in

32The presentation of ergodic theory in this subsection follows by and large Arnold and Avez
(1968) and Cornfeld et al. (1982). For accounts of the long and intertwined history of ergodic
theory see Sklar (1993, Chapters 2 and 5) and von Plato (1991, 1994, Chapter 3).
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a region R equals the fraction of the area of X that is occupied by R. This can
easily be seen by considering f(x) = χ

R
(x), where χ

R
(x) is the characteristic

function of the region R: χ
R

(x) = 1 if x ∈ R and χ
R

(x) = 0 otherwise. We then
have f̄ = λ(R) = f∗(x), meaning that the fraction of time the system spends in
R equals λ(R), which is the fraction of the area of X that is occupied by R.

Second, almost all trajectories (i.e. trajectories through almost all initial con-
ditions) come arbitrarily close to any point on the energy hypersurface infinitely
many times; or to put it another way, almost all trajectories pass through every
subset of X that has positive measure infinitely many times. This follows from
the fact that the time mean equals the space mean, which implies that the time
mean cannot depend on the initial condition x0. Hence a system can be ergodic
only if its trajectory may access all parts of the energy hypersurface.

The latter point is also closely related to the decomposition theorem. We first
define:

Decomposability. A system is decomposable (sometimes also ‘metrically decomposable’
or ‘metrically intransitive’) iff there exist two regions X1 and X2 of non-zero measure
such that X1 ∩X2 = ∅ and X1 ∪X2 = X, which are invariant under the dynamics of
the system: φt(X1) ⊆ X1 and φt(X2) ⊆ X2 for all t. A system that is not decomposable
is indecomposable (‘metrically indecomposable’ or ‘metrically transitive’).

Then we have:

Decomposition Theorem. A dynamical system is ergodic if and only if it is indecompos-
able; i.e. if every invariant measurable set has either measure zero or one.

The ergodic measure is unique, up to a continuity requirement, in the sense
that there is only one measure invariant under the dynamics. We first define:

Absolute Continuity. A measure λ′ is absolutely continuous with respect to λ iff for any
measurable region A ⊆ X: if λ(A) = 0 then λ′(A) = 0.

We then have:

Uniqueness Theorem. Assume that (X,λ, φt) is ergodic and λ is normalised. Let λ′

be another measure on X which is normalised, invariant under φt, and absolutely
continuous with respect to λ. Then λ = λ′.

For what follows it will also be important to introduce the notion of mixing.

Mixing. A system is mixing33 if and only if for all measurable subsets A and B of X:
limt→∞ µ(φtB ∩A) = µ(A)µ(B).

The meaning of this concept can be visualised as follows. Think of the phase
space as a glass of water to which a shot of scotch has been added. The volume
of the cocktail X (scotch + water) is µ(X) and the volume of scotch is µ(B);
hence the concentration of scotch in X is µ(B)/µ(X). Now stir. Mathematically,

33Strictly speaking this property is called ‘strong mixing’ since there is a similar condition
called ‘weak mixing’. The differences between these need not occupy us here. For details see
Arnold and Avez (1968, Chapter 2).
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the time evolution operator φt represents the stirring, meaning that φt(B) is
the region occupied by the scotch after time t. The cocktail is mixed, if the
concentration of scotch equals µ(B)/µ(X) not only with respect to the entire
‘glass’ X, but with respect to any arbitrary (but non-zero measure) region A in
that volume; that is, it is mixed if µ(φt(B) ∩ A)/µ(A) = µ(B)/µ(X) for any
finite volume A. This condition reduces to µ(φt(B) ∩ A)/µ(A) = µ(B) for any
region B because, by assumption, µ(X) = 1. If we now assume that mixing is
achieved only for t→∞ we obtain the above condition.

One can then prove the following two theorems.

Implication Theorem. Every dynamical system that is mixing is also ergodic, but not
vice versa.

Convergence Theorem. Let (X,λ, φt) be a dynamical system and let ρ be a measure
on X that is absolutely continuous with λ (but otherwise arbitrary). Define ρt(A) :=
ρ(φt(A)) for all measurable A ⊆ X. Let f(x) be a bounded measurable function on X.
If the system is mixing, then ρt → λ as t→∞ in the sense that for all such f :

lim
t→∞

Z
f(x)dρt =

Z
f(x)dλ. (3.20)

3.2.4.2 Promises Assuming that the system in question is ergodic seems to
provide us with neat responses to Issues 1 and 2, if macro-probabilities are con-
sidered.

Thus, let us ask the question of how are we to understand statements about
the probability of a macro-state? That is, how are we to interpret the probabilities
introduced in equation (3.4)? A natural suggestion is that probabilities should
be understood as time averages. More specifically, the suggestion is that the
probability of a macro-state M is the fraction of time that the system’s state
spends in ΓM (the so-called sojourn time):

p(M) =
1
τ

∫ t0+τ

t0

χΓM
[φt(x)]dt, (3.21)

where χΓM
is the characteristic function (as defined above) and [t0, t0 + τ ] is

some suitable interval of time.
This definition faces some prima facie problems. First, what is the suitable in-

terval of time? Second, does this time average exist? Third, as defined in eq.3.21,
p(M) exhibits an awkward dependence on the initial condition x. These difficul-
ties can be overcome by assuming that the system is ergodic. In this case the
relevant time interval is infinity; the existence question is resolved by Birkhoff’s
theorem, which states that the infinite time limit exists almost everywhere; and
the awkward dependence on the initial condition vanishes because in an ergodic
system the infinite time means equals the space means for almost all initial
conditions, and hence a fortiori the time mean, does not depend on the initial
condition x (for almost all x).
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This puts the time average interpretation of SM probabilities on a solid foun-
dation and at the same time also offers a response to the problem of the mechani-
cal foundation of the PP. The combinatorial considerations in the last subsection
have shown that the equilibrium state occupies by far the largest part of Γγ .
Combining this with the fact that the time a system spends in a given region of
Γγ is proportional to its measure provides a faultless mechanical justification of
PP.34

In sum, if the system is ergodic, we seem to have a neat mechanical explana-
tion of the system’s behaviour as well as a clear interpretation of the probabilities
that occur in the PP.

3.2.4.3 Problems The Ergodic programme faces serious difficulties. To begin
with, it turns out to be extremely difficult to prove that the systems of interest
really are ergodic. Contrary to what is sometimes asserted, not even a system
of n elastic hard balls moving in a cubic box with hard reflecting walls has
been proven to be ergodic for arbitrary n; it has been proven to be ergodic only
for n ≤ 4. Moreover, hard ball systems are highly idealised (molecules do not
behave like hard balls) and it is still an open question whether systems with
more realistic interaction potentials (e.g. Lenard-Jones potentials) are ergodic.35

What is worse than the absence of proof that the systems of interest are
ergodic is that there are systems that show the appropriate behaviour and yet
are known not to be ergodic. For instance, in a solid the molecules oscillate
around fixed positions in a lattice, and as a result the phase point of the system
can only access a small part of the energy hypersurface (Uffink 2007, p. 1017).
Bricmont (2001) investigates the Kac Ring Model (Kac 1959) and a system of
n uncoupled anharmonic oscillators of identical mass, and points out that both
systems exhibit thermodynamic behaviour— and yet they fail to be ergodic.
And most notably, a system of non-interacting point particles is known not
be ergodic; yet ironically it is exactly this system on which the combinatorial
argument is based (Uffink 1996b, p. 381). Hence, ergodicity is not necessary for
thermodynamic behaviour.36 But, as Earman and Redei (1996, p. 70) and van
Lith (2001a, p. 585) point out, if ergodicity is not necessary for thermodynamic
behaviour, then ergodicity cannot provide a satisfactory explanation for this
behaviour. Either there must be properties other than ergodicity that explain
thermodynamic behaviour in cases in which the system is not ergodic, or there

34For a further discussion of ergodicity and issues in the interpretation of probability in the
Boltzmann approach see von Plato (1981, 1982, 1988, 1989), Gutmann (1999), van Lith (2003),
Emch (2005).

35For further discussions of this issue see Sklar (1993, Chapter 5), Earman and Redei (1996,
§4), Uffink (2007, §6), Emch and Liu (2002, Chapters 7-9), and Berkovitz et al. (2006, §4).

36It has been argued that ergodicity is not sufficient either because there are systems that
are ergodic but don’t show an approach to equilibrium, for instance two hard spheres in a
box (Sklar 1973, p. 209). This is, of course, correct. But this problem is easily fixed by adding
the qualifying clause that if we consider a system of interest in the context of SM —i.e. one
consisting of something like 1023 particles—then if the system is ergodic it shows SM behaviour.
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must be an altogether different explanation for the approach to equilibrium even
for systems which are ergodic.37

But even if a system turns out to be ergodic, further problems arise. All
results and definitions of ergodic theory come with the qualification ‘almost
everywhere’: the Birkhoff theorem ensures that f∗ exists almost everywhere and
a dynamical system is said to be ergodic iff for every complex-valued, Lebesgue-
integrable function f the time mean equals the space mean almost everywhere.
This qualification is usually understood as suggesting that sets of measure zero
can be neglected or ignored. This, however, is neither trivial nor evidently true.
What justifies the neglect of these sets? This has become known as the ‘measure
zero problem’. The idea seems to be that points falling in a set of measure zero
are ‘sparse’ and this is why they can be neglected. This view receives a further
boost from an application of the Statistical Postulate, which assigns probability
zero to events associated with such sets. Hence, so goes the conclusion, what has
measure zero simply doesn’t happen.38

This is problematic for various reasons. First, sets of measure zero can be
rather ‘big’; for instance, the rational numbers have measure zero within the real
numbers. Moreover, a set of measure zero need not be (or even appear) negligible
if sets are compared with respect to properties other than their measures. For
instance, we can judge the ‘size’ of a set by its cardinality or Baire category
rather than by its measure, which leads us to different conclusions about the
set’s size (Sklar 1993, pp. 182-88).

Furthermore it is a mistake to assume that an event with measure zero cannot
occur. In fact, having measure zero and being impossible are distinct notions.
Whether or not the system at some point was in one of the special initial con-
ditions for which the space and time mean fail to be equal is a factual question
that cannot be settled by appeal to measures; pointing out that such points are
scarce in the sense of measure theory does not do much, because it does not
imply that they are scarce in the world as well.39 All we can do is find out what
was the case, and if the system indeed was in one of these initial conditions then
considerations based on this equality break down. The fact that SM works in
so many cases suggests that they indeed are scarce, but this is a matter of fact
about the world and not a corollary of measure theory.40 Hence, an explanation
of SM behaviour would have to consist of the observation that the system is
ergodic and that it additionally started in an initial condition which is such that
space and time means are equal.

37The term ‘explanation’ here is used in a non-technical sense; for a discussion of how the
use of ergodicity ties in with certain influential philosophical views about explanation see Sklar
(1973) and Quay (1978).

38This piece of ‘received wisdom’ is clearly explained but not endorsed in Sklar (2000a, pp.
265-6).

39Sklar (1973, pp. 210-11) makes a very similar point when discussing the Gibbs approach.
40For a further discussion of this issue see Friedman (1976).
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For these reasons a time average interpretation of macro-probabilities is prob-
lematic. However, alternative interpretations do not fare better. Frequentism is
ruled out by the fact that the relevant events in SM do not satisfy the require-
ment of von Mises’ theory (van Lith 2001, p. 587), and a propensity interpre-
tation (Popper 1959) fails because the existence of propensities is ultimately
incompatible with a deterministic underlying micro theory (Clark 2001).41

A peculiar way around the problem of interpreting probabilities is to avoid
probabilities altogether. This is the strategy pursued, among others, by Goldstein
(2001), Lebowitz (1993b), Goldstein and Lebowitz (2004) and Zangh̀ı (2005) in
their presentation of the Boltzmannian account. The leading idea of this ap-
proach is that equilibrium states are ‘typical’ while non-equilibrium states are
‘atypical’, and that the approach to equilibrium can be understood as a transi-
tion from atypical to typical states. For a discussion of this approach to SM see
Frigg (2007b).

3.2.5 The Past Hypothesis
3.2.5.1 The Past Hypothesis Introduced Let us now turn to Issues 2 and 3, and
base our discussion on micro-probabilities. The two problems we have to solve
are (a) that high to low entropy transitions are allowed by the dynamics (by the
reversibility objection) and (b) that most trajectories compatible with a given
non-equilibrium state are ones that have evolved into that state from a state of
higher entropy (which is a consequence of SP and the time reversal invariance
of the micro dynamics).

There is a common and now widely accepted solution to these problems which
relies on the fact that a system’s actual behaviour is determined by its dynamical
laws and its initial condition. Hence there need not be a contradiction between
time reversal invariant laws and the fact that high to low entropy transitions do
not (or only very rarely) occur in our world. All we have to do is to assume that
the relevant systems in our world have initial conditions which are such that
the system’s history is indeed one that is characterised by low to high entropy
transitions. That initial conditions of this kind are scarce is irrelevant; all that
matters is that the system de facto started off in one of them. If this is the case,
we find the irreversible behaviour that we expect. However, this behaviour is now
a consequence not only of the laws governing the system, but also of its special
initial condition.

The question is at what point in time the relevant low entropy initial con-
dition is assumed to hold. A natural answer would be that the beginning of an
experiment is the relevant instant; we prepare the gas such that it sits in the
left half of the container before we open the shutter and this is the low entropy
initial condition that we need. The problem with this answer is that the original
problem recurs if we draw an entropy curve for the system we find that the low
entropy state at the beginning of the experiment evolved another high entropy
state. The problem is obvious by now: whichever point in time we chose to be

41For a further discussion of this issue see Butterfield (1987) and Clark (1987; 1989; 1995).
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the point for the low entropy initial condition to hold, it follows that the over-
whelming majority of trajectories compatible with this state are such that their
entropy was higher in the past. An infinite regress looms large. This regress can
be undercut by assuming that there is an instant that simply has no past, in
which case it simply does not make sense to say that the system has evolved into
that state from another state. In other words, we have to assume that the low
entropy condition holds at the beginning of the universe.

At this point modern cosmology enters the scene: proponents of Boltzman-
nian SM take cosmology to inform us that the universe was created in the Big
Bang a long but finite time ago and that it then was in a low entropy state.
Hence, modern cosmology seems to provide us with exactly what we were look-
ing for. This is a remarkable coincidence, so remarkable that Price sees in it ‘the
most important achievement of late-twentieth-century physics’ (2004, p. 228).
The posit that the universe has come into existence in a low entropy state is now
(following Albert 2000) commonly referred to as the ‘Past Hypothesis’ (PH); let
us call the state that it posits the ‘Past State’. In Albert’s formulation PH is the
claim

[...] that the world first came into being in whatever particular low-entropy highly
condensed big-bang sort of macrocondition it is that the normal inferential procedures
of cosmology will eventually present to us (2000, p. 96).

This idea can be traced back to Boltzmann (see Uffink 2007, p. 990) and has
since been advocated, among others, by Feynman (1965, Chapter 5), Penrose
(1989, Chapter 7; 2006, Chapter 27), Price (1996, 2004, 2006), Lebowitz (1993a,
1993b, 1999), Albert (2000), Goldstein (2001), Callender (2004a, 2004b), and
Wald (2006).

There is a remarkable consensus on the formulation and content of PH; differ-
ent authors diverge in what status they attribute to it. For Feynman, Goldstein,
and Penrose PH, seems to have the status of a law, which we simply add to
the laws we already have. Whether such a position is plausible depends on one’s
philosophical commitments as regards laws of nature. A discussion of this issue
would take us too far afield; surveys of the philosophical controversies surround-
ing the concept of a law of nature can be found in, among others, Armstrong
(1983), Earman (1984) and Cartwright and Alexandrova (2006). Albert regards
PH as something like a Kantian regulative principle in that its truth has to be
assumed in order to make knowledge of the past possible at all. On the other
hand, Callender, Price, and Wald agree that PH is not a law, but just a contin-
gent matter of fact; but they have conflicting opinions about whether this fact
is in need of explanation.42 Thus for Price (1996, 2004) the crucial question in
the foundation of SM is not so much why entropy increases, but rather why it
ever got to be so low in the first place. Hence, what really needs to be explained

42Notice that this view has the consequence that the Second Law of thermodynamics, or
rather its ‘statistical cousin’, Boltzmann’s Law, becomes a de facto regularity and is thus
deprived it of its status as a law properly speaking.
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is why the universe shortly after the Big Bang was in the low entropy state that
PH posits. Callender (1998, 2004a, 2004b) argues that this quest is wrong. PH
simply specifies initial conditions of a process because initial conditions, irre-
spective of whether they are special or not, are not the kind of thing that is in
need of explanation. Similar concerns have also been raised by Sklar (1993, pp.
309-18).

3.2.5.2 Problems and Criticisms PH has recently come under attack. Earman
(2006) argues that what at first glance looks like a great discovery—that modern
cosmology posits exactly the kind of Past State that the Boltzmannian account
requires—turns out to be ‘not even false’ (p. 400). Earman first investigates a
particular Friedman-Robertson-Walker model of cosmology suggested by Hawk-
ing and Page and shows that in this model probabilities are typically ill-defined
or meaningless, and he then argues that this result is not an artefact of the ide-
alisations of the models and would crop up equally in more realistic models (pp.
417-18). Hence, for the cosmologies described in general relativity there is no
well-defined sense in which the Boltzmann entropy has a low value. And worse,
even if quantum gravity or some other yet to be discovered theory came to the
rescue and made it possible to give a well-defined expression for the Boltzmann
entropy at the beginning of the universe, this would be of little help because the
dynamics of the cosmological models does not warrant the claim that there will
be monotonic increase in entropy (pp. 418-20). For these two reasons, Earman
concludes, the past hypothesis is untenable.

Whatever the eventual verdict of Earman’s critique of PH, there is a further
problem in that the Boltzmann entropy is a global quantity characterising the
macro-state of an entire system, in this case the entire universe. The fact that this
quantity is low does not imply that the entropy of a particular small subsystem
of interest is also low. And what is worse, just because the overall entropy of the
universe increases it need not be the case that the entropy in a small subsystem
also increases. A decrease in the entropy in one part of the universe may be
balanced by an increase in entropy in some other part of the universe and hence
is compatible with an increase in the overall entropy. Hence, SM cannot explain
the behaviour of small systems like gases in laboratories. Winsberg (2004a, pp.
499-504) addresses this problem and argues that the only way to avoid it is to
make a further conjecture about the theory (he calls it ‘Principle 3’), which in
effect rules out local ‘entropic misbehaviour’. However, as he points out, this
principle is clearly false and hence there is no way for the Boltzmannian to rule
out behaviour of this kind.

It is not the time to notice that a radical shift has occurred at the beginning
of this subsection. We started with a pledge to explain the behaviour of homely
systems like a vessel full of gas and ended up talking about the Big Bang and
the universe as a whole. At least to some, this looks like using a sledgehammer
to crack nuts, and not a very wise move because most of the problems that it
faces are caused by the move to the cosmological scale. The natural reaction
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to this is to downsize again and talk about laboratory scale systems. This is
what happens in the so-called ‘branch systems approach’, which is inspired by
Reichenbach’s (1956) discussion of the direction of time, and is fully articulated
in Davies (1974) and discussed in Sklar (1993, pp. 318-32).

The leading idea is that the isolated systems relevant to SM have neither
been in existence forever, nor continue to exist forever after the thermodynamic
processes took place. Rather, they separate off from the environment at some
point (they ‘branch’) then exist as energetically isolated systems for a while and
then usually merge again with the environment. Such systems are referred to
as ‘branch systems’. For instance, the system consisting of a glass and an ice
cube comes into existence when someone puts the ice cube into the water, and
it ceases to exist when someone pours it into the sink. So the question becomes
why a branch system like the water with the ice cube behaves in the way it does.
An explanation can be given along the lines of the past hypothesis, with the
essential difference that the initial low entropy state has to be postulated not for
the beginning of the universe but only for the state of the system immediately
after the branching. Since the system, by stipulation, did not exist before that
moment, there is also no question of whether the system has evolved into the
current state from a higher entropy state. This way of looking at things is in
line with how working physicists think about these matters for the simple reason
that low entropy states are routinely prepared in laboratories—hence Lebowitz’s
(1993b, p. 11) remark that the origin of low entropy initial states is no problem
in laboratory situations.

Albert dismisses this idea as ‘sheer madness’ (2000, p. 89) for three reasons.
First, it is impossible to specify the precise moment at which a particular system
comes into being; that is, we cannot specify the precise branching point. Second,
there is no unambiguous way to individuate the system. Why does the system
in question consist of the glass with ice, rather than the glass with ice and the
table on which the glass stands, or the glass and ice and the table and the person
watching it, or ... And this matters because what we regard as a relevant low
entropy state depends on what we take the system to be. Third, it is questionable
whether we have any reason to assume, or whether it is even consistent to claim,
that SP holds for the initial state of the branch system.43

The first and the second criticism do not seem to be successful. Why should
the system’s behaviour have anything to do with our inability to decide at what
instant the system becomes energetically isolated? So Albert’s complaint must be
that there is no matter of the fact about when a system becomes isolated. If this
was true, it would indeed be a problem. But there does not seem to be a reason
why this should be so. If we grant that there is such a thing as being isolated
from one’s environment (an assumption not challenged in the first criticism),
then there does not seem to be a reason to claim that becoming isolated at

43As we shall see in the next subsection, it is necessary to assume that SP holds for the
initial state. Proponents of the past hypothesis and of the branch systems approach differ in
what they regard as the beginning.
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some point in time should be more problematic than the lights going off at some
point in time, or the game beginning at some point in time, or any other event
happening at some instant. The second criticism does not cut any ice either
(see Winsberg 2004b, p. 715). Being energetically isolated from the rest of the
universe is an objective feature of certain things and not others. The glass and its
contents are isolated from the rest of the universe and this is what makes them
a branch system; the table, the observer, the room, the house, etc. are not, and
this is why they are not branch systems. There is nothing subjective or arbitrary
about this division. One can, of course, question whether systems ever really are
isolated (we come to this in §3.3.5.2). But this is a different point. If one goes
down that road, then there simply are no branch systems; but then there is no
individuation problem either.

The third criticism leads us into deep waters. Why would we want to deny
that SP applies to the branch system at the instance of its creation? Although
Albert does not dwell on this point, his reasoning seems to be something like the
following (see Winsberg 2004b, pp. 715-17). Take the universe at some particular
time. Now things happen: someone opens the freezer, takes an ice cube and puts
it into a glass of lukewarm water. These are physical processes governed by the
laws of mechanics; after all, at the micro level all that happens is that swarms of
particles move around in some specific way. But then the micro-state of the glass
with ice is determined by the laws of mechanics and the micro-condition at the
earlier point of time and we can’t simply ‘reset’ the glass’ state and postulate
that it is now such that SP, or any other condition for that matter, holds. In
brief, the glass’ state at some point is dictated by the laws of the theory and is
not subject to stipulations of any kind.

Whether or not one finds this criticism convincing depends on one’s philo-
sophical commitments as regards the nature of laws. The above argument as-
sumes that laws are universal and valid all the time; it assumes that not only the
behaviour of the water and the ice, but also of the table, the room, the fridge
and, last but not least, the person putting the ice into the water and everything
else in the universe are governed by the laws of mechanics. If one shares this view,
then Albert’s third criticism is valid. However, this view of laws is not uncontro-
versial. It has been argued that the domain of applicability of laws is restricted:
we are making a mistake if we assume them to be universal. To someone of the
latter persuasion the above argument has no force at all against branch systems.
This conflict surfaces again when we discuss the interventionist approach to SM
in §3.3.5.2 and for this reason I postpone till then a more detailed discussion of
the issue of the scope of laws.

3.2.6 Micro-Probabilities Revisited

As we have seen above, SP gives us wrong retrodictions and this needs to be
fixed. PH, as introduced in the last subsection, seems to provide us with the
means to reformulate SP so that this problem no longer arises (§3.2.6.1). Once
we have a rule that assigns correct probabilities to past states, we come back to
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the question of how to interpret these probabilities (§3.2.6.2) and then address
the reversibility and recurrence objections (§3.2.6.3).

3.2.6.1 Conditionalising on PH PH, if true, ensures that the system indeed
starts in the desired low entropy state. But, as we have seen in §3.2.3.2, our prob-
abilistic machinery tells us that this is overwhelmingly unlikely. Albert (2000,
Chapter 4) argues that this is unacceptable since it just cannot be that the actual
past is overwhelmingly unlikely for this would lead us to believe wrong things
about the past.44 The source of this problem is that we have (tacitly) assumed
that SP is valid at all times. Hence this assumption must be renounced and a
postulate other than SP must be true at some times.

Albert (2000, pp. 94-6) suggests the following remedy: SP is valid only for
the Past State (the state of universe just after the Big Bang); for all later states
the correct probability distribution is the one that is uniform (with respect to
the Lebesgue measure) over the set of those conditions that are compatible with
the current macro-state and the fact that the original macro-state of the system
(at the very beginning) was the Past State. In brief, the suggestion is that we
conditionalise on the Past Hypothesis and the current macro-state.

More precisely, let MP be the macro-state of the system just after the Big
Bang (the Past State) and assume (without loss of generality) that this state
obtains at time t = 0; let Mt be the system’s macro-state at time t and let
Γt := ΓMt be the parts of Γγ, a that corresponds to Mt. Then we have:

Past Hypothesis Statistical Postulate (PHSP): SP is valid for the Past State. For all
times t > 0, the probability at t that the fine-grained micro-state of the system lies in
a subset A of Γt is

µL, t(A) :=
µL(A ∩Rt)
µL(Rt)

(3.22)

whenever Rt 6= 0, where Rt := Γt ∩ φt(ΓP ) and φt(ΓP ), as above, is the image of ΓP
under the dynamics of the system after time t has elapsed.

This is illustrated in fig. 3.7. Now, by construction, those fine-grained micro-
states in Γt which have a high entropy past have probability zero, which is what
we needed.

However, PHSP needs to be further qualified. There might be a ‘conspiracy’
in the system to the effect that states with a low entropy past and ones with
a low entropy future are clumped together. Let Γt, f be the subregions of Γt
occupied by states with a low entropy future. If it now happens that these lie
close to those states compatible with PH, then PHSP—wrongly—predicts that a

44In fact, Albert (2000, Chapters 4 and 6) even sees this as a fundamental problem threaten-
ing the very notion of having knowledge of the past. Leeds (2003) takes the opposite stance and
points out that this conclusion is not inevitable since it depends on the view that we explain
an event by its having a high probability to occur. Explaining the past, then, involves showing
that the actual past has high probability. However, if we deny that we are in the business of
explaining the past on the basis of the present and the future, then this problem looks far
less dramatic. For a further discussion of Albert’s view on past knowledge and intervention see
Frisch (2005) and Parker (2005).
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Γt Γγ,a

φtΓP

ΓP

Rt

Fig. 3.7. Illustration of the past hypothesis statistical postulate

low entropy future is very likely despite the fact that the fraction of Γt occupied
by Γt, f is tiny and that SP—correctly—predicts that a low entropy future is
very unlikely (see fig. 3.8).

Γγ,aΓt

φtΓP Γt,f

Fig. 3.8. Illustration of a conspiracy involving clumping together of low entropy
past and low entropy future states

This problem can be avoided by requiring that Γt, f is scattered in tiny clusters
all over Γt (see Albert 2000, p. 67 and pp. 81-5) so that the fraction of Γt, f
that comes to lie in Rt is exactly the same as the fraction of Γt taken up by
Γt, f , i.e. µ

L
(Γt, f )/µ

L
(Γt) = µ

L
(Γt, f ∩Rt)/µL(Rt) (see fig. 3.9). Let us call this

the ‘scattering condition’. If this condition falls in place, then the predictions of
PHSP and SP coincide and the problem is solved. In sum, replacing SP by PHSP
and requiring that the scattering condition holds for all times t is sufficient to
get both predictions and retrodictions right.
The remaining question is, of course, whether the scattering condition holds.
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φtΓP

Γt,f

Γγ,aΓt

Fig. 3.9. Scattering condition as solution to the conspiracy problem

Albert simply claims that it is plausible to assume that it holds, but he does so
without presenting, or even mentioning, a proof. Since this condition concerns
mathematical facts about the system, we need a proof, or a least a plausibility
argument, that it holds. Such a proof is not easy to get because the truth of this
condition depends on the dynamics of the system.

3.2.6.2 Interpreting Micro-Probabilities How are we to interpret the probabili-
ties defined by PHSP? Frequentism, time averages and the propensity interpreta-
tion are unworkable for the same reasons as in the context of macro-probabilities.
Loewer (2001, 2004) suggested that the way out of the impasse is to interpret
PHSP probabilities as Humean chances in Lewis’ (1994) sense. Consider all de-
ductive systems that make true assertions about what happens in the world and
also specify probabilities of certain events. The best system is the one that strikes
the best balance between simplicity, strength and fit, where the fit of a system is
measured by how likely the system regards it that things go the way they actu-
ally do. Lewis then proposes as an analysis of the concept of a law of nature that
laws are the regularities of the best system and chances are whatever the system
asserts them to be. Loewer suggests that the package of classical mechanics, PH
and PHSP is a putative best system of the world and that therefore the chances
that occur in this system can be understood as chances in Lewis’ sense.

Frigg (2006, 2007a) argues that this suggestion faces serious difficulties. First,
Lewis’ notion of fit is modelled on the frequentist notion of a sequence and cannot
be carried over to a theory with continuous time. Second, even when discretising
time in order to be able to calculate fit, it turns out that Loewer’s putative best
system is not the best system because there are distributions over the initial
conditions that lead to a better fit of the system than the distribution posited in
PHSP. The details of these arguments suggest that PHSP probabilities are best
understood as epistemic probabilities of some sort.
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3.2.6.3 Loschmidt’s and Zermelo’s Objections We now return to Loschmidt’s
and Zermelo’s objections and discuss in what way the micro probability approach
can address them.

Reversal Objection: Consider the same scenario as in §3.2.3.3. Denote by Γif
the subset of ΓMi consisting of all points that evolve into ΓMf

during the interval
∆, and likewise let Γfi be set of all points in ΓMf

that evolve into ΓMi
during

∆. We then have Γfi = R(φ∆(Γif )), where φ∆ is the time evolution of the sys-
tem during time span ∆. Therefore µ(Γfi)/µ(ΓMf

) = µ(R(φ∆(Γif )))/µ(ΓMf
) =

µ(Γif )/µ(ΓMf
), because µ(RA) = µ(A) for all sets A. By assumption µ(ΓMf

) >
µ(ΓMi) (because Mf has higher entropy than Mi), hence µ(Γif )/µ(ΓMf

) <
µ(Γif )/µ(ΓMi

). Assuming that conditionalising on PH would not upset these
proportions, it follows that the system is more likely to evolve from low to high
entropy than it is to evolve from high to low entropy. Now take Mi and Mf to
be, respectively, the state of a gas confined to the left half of the container and
the state of the gas spread out evenly over the entire available space. In this
case µ(ΓMf

)/µ(ΓMi) ≈ 10n (n being the number of particles in the system), and
hence the system is 10n times more likely to evolve from low to high entropy
than vice versa. This is what BL asserts.45

Recurrence Objection: Roughly speaking, the recurrence objection (see §3.2.3.4)
states that entropy cannot always increase because every mechanical system re-
turns arbitrarily close to its initial state after some finite time (Poincaré’s Recur-
rence Theorem). The common response (Callender 1999, p. 370; Bricmont 1996,
§4) to the recurrence objection has a somewhat empiricist flavour and points out
that, according to the Past Hypothesis, the universe is still today in a low en-
tropy state far away from equilibrium and recurrence will therefore presumably
not occur within all relevant observation times. This, of course, is compatible
with there being periods of decreasing entropy at some later point in the history
of the universe. Hence, we should not view BL as valid at all times.

3.2.7 Limitations
There are serious questions about the use of coarse graining, i.e. partitions, in
the combinatorial argument (issue 5) and the scope of the theory (issue 6). I now
discuss these problems one at a time.

How can coarse-graining be justified? The standard answer is an appeal to
knowledge: we can never observe the precise value of a physical quantity because
measuring instruments invariably have a finite resolution (just as do human
observation capabilities); all we can assert is that the result lies within a certain
range. This, so the argument goes, should be accounted for in what we assert
about the system’s state and the most natural way to do this is to choose a
partition whose cell size reflects what we can reasonably hope to know about the
system.

This argument is problematic because the appeal to observation introduces a
kind of subjectivity into the theory that does not belong there. Systems approach

45See Bricmont (1996, §3) for a more detailed discussion.
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equilibrium irrespective of what we happen to know about them. Hence, so the
objection concludes, any reference to incomplete knowledge is out of place.46

Another line of argument is that there exists an objective separation of rele-
vant scales—in that context referred to as ‘micro’ and ‘macro’47—and that this
justifies coarse-graining.48 The distinction between the two scales is considered
objective in much the same way as, say, the distinction between dark and bright:
it may not be clear where exactly to draw the line, but there is no question that
there is a distinction between dark and bright. From a technical point of view,
the separation of scales means that a macro description is bound to use a finite
partition (whose cell size depends on where exactly one draws the line between
the micro and macro scales). This justifies Boltzmannian coarse-graining.

The question is whether there really is an objective micro-macro distinction of
this kind. At least within the context of classical mechanics this is not evidently
the case. In quantum mechanics Planck’s constant gives a natural limit to how
confined a state can be in both position and momentum, but classical mechanics
by itself does not provide any such limit. So the burden of proof seems to be
on the side of those who wish to uphold that there is an objective separation
between micro and macro scales.

And this is not yet the end of the difficulties. Even if the above arguments were
successful, they would remain silent about the questions surrounding the choice
of the ‘right’ partition. Nothing in either the appeal to the limits of observation
or the existence of an objective separation of scales explains why coarse-graining
energy is ‘bad’ while coarse-graining position and momentum is ‘good’.

These problems are not easily overcome. In fact, they seem so serious that
they lead Penrose to think that ‘entropy has the status of a “convenience”, in
present day theory, rather than being “fundamental”’(2006, p. 692) and that it
only would acquire a ‘more fundamental status’ in the light of advances in quan-
tum theory, in particular quantum gravity, as only quantum mechanics provides
the means to compartmentalise phase space (ibid.).

In the light of these difficulties the safe strategy seems to be to renounce com-
mitment to coarse-graining by downgrading it to the status of a mere expedient,
which, though instrumentally useful, is ultimately superfluous. For this strategy
to be successful the results of the theory would have to be robust in the limit
δω → 0.

46Many authors have criticised approaches to SM that invoke limited knowledge as deficient.
Since these criticisms have mainly been put forward against Gibbsian approaches to SM, I will
come back to this point in more detail below.

47Notice that this use of the terms ‘micro’ and ‘macro’ does not line up with how these terms
have been used above, where both fine-grained and coarse-grained states were situated at the
‘micro’ level (see §3.2.1).

48This point of view is often alluded to by physicists but rarely explained, let alone defended.
It also seems to be what Goldstein has in mind when he advises us to ‘partition the 1-particle
phase space (the q, p-space) into macroscopically small but microscopically large cells ∆α’
(2001, p. 42).
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But this is not the case. The terms on the right-hand side of eq.3.13 diverge
in the limit δω → 0. And this is not simply a ‘technical accident’ that one can get
straight given enough mathematical ingenuity. On the contrary, the divergence
of the Boltzmann entropy is indicative of the fact that the whole argument is
intimately tied to there being finitely many cells which serve as the starting point
for a combinatorial argument. Using combinatorics simply does not make sense
when dealing with a continuum; so it is only natural that the argument breaks
down in the continuum limit.

Let us now turn to the limitations of the formalism, which are intimately con-
nected to the Boltzmannian conception of equilibrium. The equilibrium macro-
state, by definition, is the one for which S

B
is maximal. Per se this is just

a definition and its physical relevance needs to be shown. This is done in two
steps. First, we use the combinatorial argument to explicitly construct the macro-
regions as those parts of the energy hypersurface that correspond to a certain
distribution, and then show that the largest macro-region is the one that corre-
sponds to the Maxwell-Boltzmann distribution. But why is this the equilibrium
distribution of a physical system? This is so, and this is the second step, because
(a) predictions made on the basis of this distribution bear out in experiments,
and (b) Maxwell showed in 1860 that this distribution can be derived from sym-
metry considerations that are entirely independent of the use of a partition (see
Uffink (2007, pp. 943-8) for a discussion of Maxwell’s argument). This provides
the sought-after justification of the proposed definition of equilibrium.

The problem is that this justification is based on the assumption that there
is no interaction between the particles in the system and that therefore the total
energy of the system is the sum of the ‘individual’ particle energies. While not a
bad characterisation of the situation in dilute gases, this assumption is radically
false when we consider systems with non-negligible interactions such as liquids,
solids, or gravitating systems. Hence, the above justification for regarding the
macro-state for which S

B
is maximal as the equilibrium state is restricted to

dilute gases, and it is not clear whether the equilibrium macro-state can be
defined in the same way in systems that are not of this kind.

There is a heuristic argument for the conclusion that this is problematic.
Consider a system of gravitating particles. These particles attract each other
and hence have the tendency to clump together. So if it happens that a large
amount of these are distributed evenly over a bounded space, then they will move
together and eventually form a lump. However, the phase volume corresponding
to a lump is much smaller than the one corresponding to the original spread out
state, and hence it has lower Boltzmann entropy.49 So we have here a system
that evolves from a high to a low entropy state. This problem is usually ‘solved’

49A possible reply to this is that the loss in volume in configuration space is compensated by
an increase in volume in momentum space. Whether this argument is in general correct is an
open question; there at least seem to be scenarios in which it is not, namely ones in which all
particles end up moving around with almost the same velocity and hence only occupy a small
volume of momentum space.
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by declaring that things are different in a gravitating system and that we should,
in such cases, regard the spread out state as one of low entropy and the lump as
one of high entropy. Whether or not this ad hoc move is convincing may well be a
matter of contention. But even if it is, it is of no avail to the Boltzmannian. Even
if one redefines entropy such that the lump has high and the spread out state
low entropy, it is still a fact that the phase volume corresponding to the spread
out state is substantially larger than the one corresponding to the lump, and
Boltzmannian explanations of thermodynamic behaviour typically make essential
use of the fact that the equilibrium macro-region is the largest of all macro
regions.

Hence macro-states need to be defined differently in the context of interacting
systems. Goldstein and Lebowitz (2004, pp. 60-3) discuss the problem of defin-
ing macro-states for particles interacting with a two-body potential φ(qi − qj),
where qi and qj are the position coordinates of two particles, and they develop
a formalism for calculating the Boltzmann entropy for systems consisting of a
large number of such particles. However, the formalism yields analytical results
only for the special case of a system of hard balls. Numerical considerations also
provide results for (two-dimensional) particles interacting with a cutoff Lennard-
Jones potential, i.e. a potential that has the Lennard-Jones form for |qi−qj | ≤ rc
and is zero for all |qi− qj | > rc, where rc is a cutoff distance (Garrido, Goldstein
and Lebowitz 2004, p. 2).

These results are interesting, but they do not yet provide the sought-after
generalisation of the Boltzmann approach to more realistic systems. Hard ball
systems are like ideal gases in that the interaction of the particles do not con-
tribute to the energy of the system; the only difference between the two is that
hard balls are extended while the ‘atoms’ of an ideal gas are point particles. Sim-
ilarly, the cutoff Lennard-Jones potential also represents only a small departure
from the idea of the ideal gas as the cutoff distance ensures that no long range
interactions contribute to the energy of the system. However, typical realistic
interactions such as gravity and electrostatic attraction/repulsion are long range
interactions. Hence, it is still an open question whether the Boltzmann formalism
can be extended to systems with realistic interactions.

3.2.8 Reductionism

Over the past decades, the issue of reductionism has attracted the attention of
many philosophers and a vast body of literature on the topic has grown; Kim
(1998) presents a brief survey; for a detailed discussion of the different positions
see Hooker (1981) and Batterman (2002, 2003); Dupré (1993) expounds a radi-
cally sceptical perspective on reduction. This enthusiasm did not resonate with
those writing on the foundations of SM and the philosophical debates over the
nature (and even desirability) of reduction had rather little impact on work done
on the foundations of SM (this is true for both the Boltzmannian and Gibbsian
traditions). This is not the place to make up for this lack of interaction between
two communities, but it should be pointed out that it might be beneficial to both
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those interested in reduction as well as those working on the foundations of SM
to investigate whether, and if so how, philosophical accounts of reduction relate
to SM and what consequences certain philosophical perspectives on reduction
would have on how we think about the aims and problems of SM.

One can only speculate about what the reasons for this mutual disinterest are.
A plausible explanation seems to be that reductionism has not been perceived
as problematic by those working on SM and hence there did not seem to be
a need to turn to the philosophical literature. A look at how reductionism is
dealt with in the literature on SM confirms this suspicion: by and large there
is agreement that the aim of SM is to derive, fully and rigorously, the laws of
TD from the underlying micro theory. This has a familiar ring to it for those
who know the philosophical debates over reductionism. In fact, it is precisely
what Nagel (1961, Chapter 11) declared to be the aim of reduction. So one
can say that the Nagelian model of reduction is the (usually unquestioned and
unacknowledged) ‘background philosophy’ of SM. This sets the agenda. I will first
introduce Nagel’s account of reduction, discuss some of its problems, mention a
possible ramification, and then examine how well the achievements of SM square
with this conception of reduction. At the end I will mention some further issues
in connection with reduction.

The core idea of Nagel’s theory of reduction is that a theory T1 reduces a
theory T2 (or T2 is reduced to T1) only if the laws of T2 are derivable from those
of T1; T1 is then referred to as the ‘reducing theory’ and T2 as the ‘reduced
theory’. In the case of a so-called homogeneous reduction both theories contain
the same descriptive terms and use them with (at least approximately) the same
meaning. The derivation of Kepler’s laws of planetary motion and Galileo’s law of
free fall from Newton’s mechanics are proposed as paradigm cases of reductions
of this kind. Things get more involved in the case of so-called ‘heterogeneous’
reductions, when the two theories do not share the same descriptive vocabulary.
The reduction of TD belongs to this category because both TD and SM contain
concepts that do not form part of the other theory (e.g. temperature is a TD
concept that does not appear in the core of SM, while trajectories and phase
functions are foreign to TD), and others are used with very different meanings
(entropy is defined in totally dissimilar ways in TD and in SM). In this case
so-called ‘bridge laws’ need to be introduced, which connect the vocabulary of
both theories. More specifically, Nagel requires that for every concept C of T2

that does not appear in T1 there be a bridge law connecting C to concepts of T1

(this is the so-called ‘requirement of connectability’). The standard example of a
bridge law is the equipartition relation 〈E〉 = 3/2k

B
T , connecting temperature

T with the mean kinetic energy 〈E〉.
Bridge laws carry with them a host of interpretative problems. What status

do they have? Are they linguistic conventions? Or are they factual statements?
If so, of what sort? Are they statements of constant conjunction (correlation) or
do they express nomic necessities or even identities? And depending on which
option one chooses the question arises of how a bridge law is established. Is
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it a factual discovery? By which methods is it established? Moreover, in what
sense has T1 reduced T2 if the reduction can only be carried out with the aid of
bridge laws which, by definition, do not belong to T1? Much of the philosophical
discussions on Nagelian reduction has centred around these issues.

Another problem is that strict derivability often is too stringent a requirement
because only approximate versions of the T2-laws can be obtained. For instance,
it is not possible to derive strict universal laws from a statistical theory. To
make room for a certain mismatch between the two theories, Schaffner (1976)
introduced the idea that concepts of T2 often need to be modified before they
can be reduced to T1. More specifically, Schaffner holds that T1 reduces T2 only if
there is a corrected version T ∗2 of T2 such that T ∗2 is derivable from T1 given that
(1) the primitive terms of T ∗2 are associated via bridge laws with various terms
of T1, (2) T ∗2 corrects T2 in the sense that T ∗2 makes more accurate predictions
than T2 and (3) T ∗2 and T2 are strongly analogous.

With this notion of reduction in place we can now ask whether Boltzmannian
SM reduces TD in this sense. This problem is usually narrowed down to the
question of whether the Second Law of TD can be deduced from SM. This is of
course an important question, but it is by no means the only one; I come back to
other issues below. From what has been said so far it is obvious that the Second
Law cannot be derived from SM. The time reversal invariance of the dynamics
and Poincaré recurrence imply that the Boltzmann entropy does not increase
monotonically at all times. In fact, when an SM system has reached equilibrium
it fluctuates away from equilibrium every now and then. Hence, a strict Nagelian
reduction of TD to SM is not possible. However, following Schaffner, this is
anyway too much to ask for; what we should look for is a corrected version
TD* of TD, which satisfies the above-mentioned conditions and which can be
reduced to SM. Callender (2001, pp. 542-5) argues that this is precisely what
we should do because trying to derive the exact Second Law would amount to
‘taking thermodynamics too seriously’; in fact, what we need to derive from SM
is an ‘analogue’ of the Second Law.50 One such analogue is BL, although there
may be other candidates.

The same move helps us to reduce thermodynamic irreversibility. Callender
(1999, p. 359 and pp. 364-7) argues that it is a mistake to try to deduce strict
irreversibility from SM. All we need is an explanation of how phenomena that
are irreversible on an appropriate time scale emerge from SM, where what is
appropriate is dictated by the conditions of observation. In other words, what
we need to recover from SM is the phenomena supporting TD, not a strict reading
of the TD laws.

Given this, the suggestion is that S
B

can plausibly be regarded as the SM
counterpart of the entropy of TD*. This is a plausible suggestion, but it seems
that more needs to be said by way of justification. Associating S

B
with the

50The same problem crops up when reducing the notions of equilibrium (Callender 2001, pp.
545-7) and the distinction between intensive and extensive TD variables (Yi 2003, pp. 1031-2)
to SM: a reduction can only take place if we first present a suitably revised version of TD.
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entropy of TD* effectively amounts to introducing a bridge law that defines the
TD* entropy in terms of the logarithm of the phase volume of macro regions.
This brings back all the above questions about the nature of bridge laws. What
justifies the association of TD* entropy with its SM counterpart? Of what kind
is this association? The discussion of the relation between the two entropies is
usually limited to pointing out that the values of the two coincide in relevant
situations. This certainly is an important point, but it does not answer the deeper
questions about the relationship between the two concepts.

Although the second law occupies centre stage in TD, it is not the only law
that needs to be reduced; in particular, we need to account for how the First
Law of TD reduces to SM. And in this context a further problem crops up (Sklar
1999, p. 194). To explain how systems of very different kinds can transfer energy
to one another, we need to assume that these systems have temperatures. This,
in turn, implies that temperature can be realised in radically different ways; in
other words, temperature is multiply realisable. How can that be? How do the
various ‘realisers’ of temperature relate to one another? What exactly makes
them realisers of this concept and why can we give them a uniform treatment in
the theory?51

Similar problems also appear when we reduce more ‘local’ laws and properties
to SM. For instance, the relation between pressure, volume and temperature of
an ideal gas is given by the equation pV = nk

B
T , the so called ‘ideal gas law’.

In order to derive this law we need to make associations, for instance between
pressure and mechanical properties like mass and momentum transfer, that have
the character of bridge laws. How are these justified? Sklar (1993, pp. 349-50)
points out how complex even this seemingly straightforward case is.

And then there are those TD concepts that SM apparently remains silent
about. Most importantly the concept of a quasi-static transformation (or pro-
cess), which lies at the heart of TD. The laws of TD only apply to equilibrium
situations and therefore changes in a system have to be effected in a way that
never pushes the system out of equilibrium , i.e. by so-called quasi-static trans-
formations (see Uffink (2001) for discussion of this concept). But what does it
mean in SM to perform a quasi-static transformation on a system?52

Furthermore, one of the alleged payoffs of a successful reduction is expla-
nation, i.e. the reduction is supposed to explain the reduced theory. Does SM
explain TD and if so in what sense? This question is clearly stated by Sklar
(1993, pp. 148-54; 2000, p. 740) Callender (1999, pp. 372-3) and Hellman (1999,
p. 210), but it still awaits an in-depth discussion.

3.3 The Gibbs Approach
At the beginning of the Gibbs approach stands a radical rupture with the Boltz-
mann programme. The object of study for the Boltzmannians is an individual

51For a further discussion of temperature see Sklar (1993, pp. 351-4), Uffink (1996, pp. 383-6)
and Yi (2003, pp. 1032-6).

52Thanks to Wolfgang Pietsch for drawing my attention to this point.
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system, consisting of a large but finite number of micro constituents. By con-
trast, within the Gibbs framework the object of study is a so-called ensemble,
an uncountably infinite collection of independent systems that are all governed
by the same Hamiltonian but distributed over different states. Gibbs introduces
the concept as follows:

We may imagine a great number of systems of the same nature, but differing in the
configurations and velocities which they have at a given instant, and differing not only
infinitesimally, but it may be so as to embrace every conceivable combination of con-
figuration and velocities. And here we may set the problem, not to follow a particular
system through its succession of configurations, but to determine how the whole num-
ber of systems will be distributed among the various conceivable configurations and
velocities at any required time, when the distribution has been given for some one
time. (Gibbs 1902, p. v)

Ensembles are fictions, or ‘mental copies of the one system under consideration’
(Schrödinger 1952, p. 3); they do not interact with each other, each system has
its own dynamics, and they are not located in space and time.

Ensembles should not be confused with collections of micro-objects such as
the molecules of a gas. The ensemble corresponding to a gas made up of n
molecules, say, consists of an infinite number of copies of the entire gas; the
phase space of each system in the ensemble is the 6n-dimensional γ-space of the
gas as a whole.

3.3.1 The Gibbs Formalism

Consider an ensemble of systems. The instantaneous state of one system of the
ensemble is specified by one point in its γ-space, also referred to as the system’s
micro-state.53 The state of the ensemble is therefore specified by an everywhere
positive density function ρ(q, p, t) on the system’s γ-space.54 The time evolution
of the ensemble is then associated with changes in the density function in time.

Within the Gibbs formalism ρ(q, p, t) is regarded as a probability density,
reflecting the probability of finding the state of a system chosen at random from
the entire ensemble in region R ⊆ Γ55 at time t:

p
t
(R) =

∫
R

ρ(q, p, t)dΓ (3.23)

For this reason the distribution has to be normalised:

53To be more precise, the system’s fine-grained micro-state. However, within the Gibbs ap-
proach coarse-graining enters the stage only much later (in §3.3.5) and so the difference between
coarse-grained and fine-grained micro-states need not be emphasised at this point.

54That is, ρ(q, p, t) ≥ 0 for all (q, p) ∈ Γγ and all instants of time t.
55The µ-space of a system does not play any rôle in the Gibbs formalism. For this reason

I from now on drop the subscript ‘γ’ and only write ‘Γ’ instead of ‘Γγ ’ when referring to a
system’s γ-space.



142 RECENT WORK ON THE FOUNDATIONS OF STATISTICAL MECHANICS

∫
Γ

ρ(q, p, t) dΓ = 1. (3.24)

Now consider a real valued function f : Γ× t → R. The phase average (some
times also ‘ensemble average’) of this function is given by:

f̄(t) =
∫

Γ

f(q, p, t)ρ(q, p, t) dΓ. (3.25)

Phase averages occupy centre stage in the Gibbs formalism because it is these
that, according to the formalism, we observe in experiments. More specifically,
the Gibbs formalism postulates that to every experimentally observable quantity
F (t) (with the exception of absolute temperature and entropy) there corresponds
a phase function f(q, p, t) such that eq.3.25 yields the value that we should expect
to find in an experiment: F (t) = f̄(t).

Using the principles of Hamiltonian mechanics one can then prove that the
total derivative of the density function equals zero,

dρ

dt
= 0, (3.26)

which is commonly referred to as ‘Liouville’s theorem’ in this context. Intuitively,
this theorem says that ρ moves in phase space like an incompressible fluid. With
eq.3.44 in the Appendix it follows that the time evolution of ρ is given by Liou-
ville’s equation:

∂ρ

∂t
= −{ρ,H}, (3.27)

where { · , · } is the Poisson bracket and H the Hamiltonian governing the sys-
tem’s dynamics. By definition, a distribution is stationary iff ∂ρ/∂t = 0 for all
t.

Given that observable quantities are associated with phase averages and that
equilibrium is defined in terms of the constancy of the macroscopic parameters
characterising the system, it is natural to regard the stationarity of the distri-
bution as defining equilibrium because a stationary distribution yields constant
averages.56 For this reason Gibbs refers to stationarity as the ‘condition of sta-
tistical equilibrium’.

Among all stationary distributions57 those satisfying a further requirement,
the Gibbsian maximum entropy principle, play a special rôle. The fine-grained
Gibbs entropy (sometimes also ‘ensemble entropy’) is defined as

56Provided that the observable f itself is not explicitly time dependent, in which case one
would not require equilibrium expectation values to be constant.

57As Gibbs notes, every distribution that can be written as a function of the Hamiltonian is
stationary.
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S
G

(ρ) := −k
B

∫
Γ

ρ log(ρ)dΓ. (3.28)

The Gibbsian maximum entropy principle then requires that S
G

(ρ) be maximal,
given the constraints that are imposed on the system.

The last clause is essential because different constraints single out different
distributions. A common choice is to keep both the energy and the particle
number in the system fixed: E=const and n=const (while also assuming that
the spatial extension of the system is finite). One can prove that under these cir-
cumstances S

G
(ρ) is maximal for what is called the ‘microcanonical distribution’

(or ‘microcanonical ensemble’), the distribution which is uniform on the energy
hypersurface H(q, p) = E and zero elsewhere:

ρ(q, p) = C δ[E −H(q, p)], (3.29)

where C is some suitable normalisation constant and δ is Dirac’s delta function.58

If we choose to hold the number of particles constant while allowing for
energy fluctuations around a given mean value we obtain the so-called canonical
distribution; if we also allow the particle number to fluctuate around a given
mean value we find the so-called grand-canonical distribution (for details see, for
instance, Tolman 1938, Chapters 3 and 4).

3.3.2 Problems and Tasks

In this subsection I list the issues that need to be addressed in the Gibbs pro-
gramme and make some remarks about how they differ from the problems that
arise in the Boltzmann framework. Again, these issues are not independent of
each other and the response to one bears on the responses to the others.

3.3.2.1 Issue 1: Ensembles and Systems The most obvious problem concerns
the use of ensembles. The probability distribution in the Gibbs approach is de-
fined over an ensemble, the formalism provides ensemble averages, and equilib-
rium is regarded as a property of an ensemble. But what we are really interested
in is the behaviour of a single system. What can the properties of an ensemble,
a fictional entity consisting of infinitely many copies of a system, tell us about
the one real system that we investigate? And how are we to reconcile the fact
that the Gibbs formalism treats equilibrium as a property of an ensemble with
physical common sense and thermodynamics, both of which regard an individual
system as the bearer of this property?

These difficulties raise the question of whether the commitment to ensembles
could be renounced. Are ensembles really an irreducible part of the Gibbsian

58This distribution is sometimes referred to as the ‘super microcanonical distribution’ while
the term ‘microcanonical distribution’ is used to refer to a slightly different distribution, namely
one that is constant on a thin but finite ‘sheet’ around the accessible parts of the energy
hypersurface and zero elsewhere. It turns out that the latter distribution is mathematically
more manageable.
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scheme or are they just an expedient, or even a pedagogical ploy, of no funda-
mental significance? If so, how can the theory be reformulated without appeal
to ensembles?

These questions are of fundamental significance, not least because it is the
use of ensembles that frees the Gibbs approach from some of the most pressing
problems of the Boltzmann approach, namely the reversal and the recurrence
objections. These arise exactly because we are focussing on what happens in an
individual system; in an ensemble recurrence and reverse behaviour are no prob-
lem because it can be accepted that some systems in the ensemble will behave
non-thermodynamically, provided that their contribution to the properties of the
ensemble as a whole is taken into account when calculating ensemble averages.
So some systems behaving strangely is no objection as this does not imply that
the ensemble as a whole behaves in a strange way too.

3.3.2.2 Issue 2: The Connection with Dynamics and the Interpretation of Proba-
bility The microcanonical distribution has been derived from the Gibbsian max-
imum entropy principle and the requirement that the equilibrium distribution
be stationary. Neither of these requirements make reference to the dynamics of
the system. However, as in the case of the combinatorial argument, it seems odd
that equilibrium conditions can be specified without any appeal to the dynamics
of the systems involved. That equilibrium can be characterised by a microcanon-
ical distribution must, or so it seems, have something to do with facts about
the system in question. Understanding the connection between the properties of
a system and the Gibbsian probability distribution is complicated by the fact
that the distribution is one pertaining to an ensemble rather than an individual
system. What, if anything, in the dynamics gives rise to, or justifies, the use of
the microcanonical distribution? And if there is no such justification, what is the
reason for this?

Closely related to the question of how the probability distribution relates to
the system’s dynamics is the problem of interpreting these probabilities. The
options are the same as in §3.2.3.2 and need not be repeated here. What is
worth emphasising is that, as we shall see, different interpretations of probability
lead to very different justifications of the maximum entropy requirement and its
connection to the dynamics of the system; in fact, in non-equilibrium theory
they lead to very different formalisms. Thus, this is a case where philosophical
commitments shape scientific research programmes.

3.3.2.3 Issue 3: Why Does Gibbs Phase Averaging Work? The Gibbs formal-
ism posits that what we observe in actual experiments are phase averages. Prac-
tically speaking this method works just fine. But why does it work? Why do
averages over an ensemble coincide with the values found in measurements per-
formed on an actual physical system in equilibrium? There is no obvious con-
nection between the two and if Gibbsian phase averaging is to be more than a
black-box technique then we have to explain what the connection between phase
averages and measurement values is.
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3.3.2.4 Issue 4: The Approach to Equilibrium Phase averaging only applies to
equilibrium systems and even if we have a satisfactory explanation of why this
procedure works, we are still left with the question of why and how the system
reaches equilibrium at all if, as often happens, it starts off far from equilibrium.

Gibbsian non-equilibrium theory faces two serious problems. The first is that
the Gibbs entropy is constant. Consider now a system out of equilibrium, char-
acterised by a density ρq,p,t. This density is not stationary and its entropy not
maximal. Given the laws of thermodynamics we would expect this density to
approach the equilibrium density as time evolves (e.g. in the case of a system
with constant energy and constant particle number we would expect ρq,p,t to
approach the microcanonical distribution), which would also be reflected in an
increase in entropy. This expectation is frustrated. Using Liouville’s equation
one can prove that ρq,p,t does not approach the microcanonical distribution and,
what seems worse, that the entropy does not increase at all. In fact, it is straight-
forward to see that SG is a constant of the motion (Zeh, 2001, pp. 48-9); that
is, dSG(ρq,p,t)/dt = 0, and hence SG(ρq,p,t) = dSG(ρq,p,0) for all times t. This
precludes a characterisation of the approach to equilibrium in terms of increasing
Gibbs entropy. Hence, either such a characterisation has to be given up (at the
cost of being fundamentally at odd with thermodynamics), or the formalism has
to be modified in a way that makes room for entropy increase.

This precludes a characterisation of the approach to equilibrium in terms of
increasing Gibbs entropy. Hence, either such a characterisation has to be given
up (at the cost of being fundamentally at odds with thermodynamics), or the
formalism has to be modified in a way that makes room for entropy increase.

The second problem is the characterisation of equilibrium in terms of a sta-
tionary distribution. The Hamiltonian equations of motion, which govern the
system, preclude an evolution from a non-stationary to a stationary distribu-
tion: if, at some point in time, the distribution is non-stationary, then it will
remain non-stationary for all times and, conversely, if it is stationary at some
time, then it must have been stationary all along (van Lith 2001a, 591-2). Hence,
if a system is governed by Hamilton’s equation, then a characterisation of equi-
librium in terms of stationary distributions contradicts the fact that an approach
to equilibrium takes place in systems that are not initially in equilibrium.

Clearly, this is a reductio of a characterisation of equilibrium in terms of sta-
tionary distributions. The reasoning that led to this characterisation was that
an equilibrium state is one that remains unchanged through time, which, at the
mechanical level, amounts to postulating an unchanging, i.e. stationary, distri-
bution. This was too quick. Thermodynamic equilibrium is defined as a state in
which all macro-parameters describing the system are constant. So all that is
needed for equilibrium is that the distribution be such that mean values of the
functions associated with thermodynamic quantities are constant in time (Sklar
1978, p. 191). This is a much weaker requirement because it can be met by dis-
tributions that are not stationary. Hence we have to come to a more ‘liberal’
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characterisation of equilibrium; the question is what this characterisation is.59

3.3.2.5 Issue 5: Reductionism Both the Boltzmannian and the Gibbsian ap-
proach to SM eventually aim to account for the TD behaviour of the systems
under investigation. Hence the questions for the Gibbs approach are exactly the
same as the ones mentioned in §3.2.3.7, and the starting point will also be Nagel’s
model of reduction (introduced in §3.2.8).

3.3.2.6 Plan As mentioned above, the methods devised to justify the use of
the microcanonical distribution and the legitimacy of phase averaging, as well as
attempts to formulate a coherent non-equilibrium theory are radically different
depending on whether probabilities are understood ontically or epistemically. For
this reason it is best to discuss these two families of approaches separately. §3.3.3
presents arguments justifying Gibbs phase averaging on the basis of an ontic
understanding of the probabilities involved. What this understanding might be
is discussed in §3.3.4. I turn to this question only after a discussion of different
justifications of phase averaging because although an ontic understanding of
probabilities is clearly assumed, most writers in this tradition do not discuss this
assumption explicitly and one can only speculate about what interpretation of
probability they might endorse. §3.3.5 is concerned with different approaches to
non-equilibrium that are based on this interpretation of probabilities. In §3.3.6 I
discuss the epistemic approach to the Gibbs formalism. I close this Section with
a discussion of reductionism in the Gibbs approach (§3.3.7).

3.3.3 Why Does Gibbs Phase Averaging Work?

Why do phase averages coincide with values measured in actual physical systems?
There are two families of answers to this question, one based on ergodic theory
(using ideas we have seen in the Boltzmann Section), the other building on the
notion of a thermodynamic limit. For reasons of space we will treat this second
approach much more briefly.

3.3.3.1 Time Averages and Ergodicity Common wisdom justifies the use of
phase averages as follows.60 The Gibbs formalism associates physical quantities
with functions on the system’s phase space. Making an experiment to measure
one of these quantities takes some time. So what measurement devices register
is not the instantaneous value of the function in question, but rather its time
average over the duration of the measurement; hence it is time averages that

59Leeds (1989, pp. 328-30) also challenges as too strong the assumption that a physical system
in an equilibrium state has a precise probability distribution associated with it. Although this
may well be true, this seems to be just another instance of the time-honoured problem of how
a precise mathematical description is matched up with a piece of physical reality that is not
intrinsically mathematical. This issue is beyond the scope of this review.

60This view is discussed but not endorsed, for instance, in Malament and Zabell (1980, p.
342), Bricmont (1996, pp. 145-6), Earman and Redei (1996, pp. 67-9), and van Lith (2001a,
pp. 581-3).



THE GIBBS APPROACH 147

are empirically accessible. Then, so the argument continues, although measure-
ments take an amount of time that is short by human standards, it is long com-
pared to microscopic time scales on which typical molecular processes take place
(sometimes also referred to as ‘microscopic relaxation time’). For this reason the
actually measured value is approximately equal to the infinite time average of
the measured function. This by itself is not yet a solution to the initial prob-
lem because the Gibbs formalism does not provide us with time averages and
calculating these would require an integration of the equations of motion, which
is unfeasible. This difficulty can be circumvented by assuming that the system
is ergodic. In this case time averages equal phase averages, and the latter can
easily be obtained from the formalism. Hence we have found the sought-after
connection: the Gibbs formalism provides phase averages which, by ergodicity,
are equal to infinite time averages, and these are, to a good approximation, equal
to the finite time averages obtained from measurements.

This argument is problematic for at least two reasons (Malament and Zabell
1980, pp. 342-3; Sklar 1973, p. 211). First, from the fact that measurements take
some time it does not follow that what is actually measured are time averages.
Why do measurements produce time averages and in what way does this depend
on how much time measurements take?

Second, even if we take it for granted that measurements do produce finite
time averages, then equating these with infinite time averages is problematic.
Even if the duration of the measurement is very long (which is often not the case
as actual measurement may not take that much time), finite and infinite averages
may assume very different values. And the infinity is crucial: if we replace infinite
time averages by finite ones (no matter how long the relevant period is taken to
be), then the ergodic theorem does not hold any more and the explanation is
false.

Besides, there is another problem once we try to apply the Gibbs formalism
to non-equilibrium situations. It is a simple fact that we do observe how systems
approach equilibrium, i.e. how macroscopic parameter values change, and this
would be impossible if the values we observed were infinite time averages.

These criticisms seem decisive and call for a different strategy in addressing
Issue 3. Malament and Zabell (1980) respond to this challenge by suggesting a
new way of explaining the success of equilibrium theory, at least for the micro-
canonical ensemble. Their method still invokes ergodicity but avoids altogether
appeal to time averages and only invokes the uniqueness of the measure (see
§3.2.4). Their explanation is based on two Assumptions (ibid., p. 343).

Assumption 1. The phase function f associated with a macroscopic param-
eter of the system exhibits small dispersion with respect to the microcanonical
measure; that is, the set of points on the energy hypersurface ΓE at which f
assumes values that differ significantly from its phase average has vanishingly
small microcanonical measure. Formally, for any ‘reasonably small’ ε > 0 we
have
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λ
({

x ∈ ΓE : | f(x)−
∫

ΓE

f dλ | ≥ ε
})
≈ 0, (3.30)

where λ is the microcanonical measure (i.e. the measure that is constant on the
accessible part of the energy hypersurface and normalised).

Assumption 2. At any given time, the microcanonical measure represents
the probability of finding the system in a particular subset of the phase space:
p(A) = λ(A), where A is a measurable but otherwise arbitrary subset of ΓE .
These two assumptions jointly imply that, at any given time, it is overwhelmingly
likely that the system’s micro-state is one for which the value of f coincides with,
or is very close to, the phase average.

The question is how these assumptions can be justified. In the case of As-
sumption 1 Malament and Zabell refer to a research programme that originated
with the work of Khinchin. The central insight of this programme is that phase
functions which are associated with macroscopic parameters satisfy strong sym-
metry requirements and as a consequence turn out to have small dispersion on
the energy surface for systems with a large number of constituents. This is just
what is needed to justify Assumption 1. This programme will be discussed in the
next subsection; let us assume for now that it provides a satisfactory justification
of Assumption 1.

To justify Assumption 2 Malament and Zabell introduce a new postulate: the
equilibrium probability measure p( · ) of finding a system’s state in a particular
subset of ΓE must be absolutely continuous with respect to the microcanonical
measure λ (see §3.2.4). Let us refer to this as the ‘Absolute Continuity Postulate’
(ACP).61

Now consider the dynamical system (X,φ, λ), where X is ΓE , φ is the flow on
ΓE induced by the equations of motion governing the system, and λ is the mi-
crocanonical measure on ΓE . Given this, one can present the following argument
in support of Assumption 2 (ibid. p. 345):

(P1) (X,φ, λ) is ergodic.
(P2) p( · ) is invariant in time because this is the defining feature of
equilibrium probabilities.
(P3) by ACP, p( · ) is absolutely continuous with λ.
(P4) According to the uniqueness theorem (see §3.2.4.1), λ is the only
measure invariant in time.
Conclusion: p( · ) = λ.

Hence the microcanonical measure is singled out as the one and only correct
measure for the probability of finding a system’s micro-state in a certain part of
phase space.

61I formulate ACP in terms of λ because this simplifies the argument to follow. Malament
and Zabell require that p( · ) be absolutely continuous with µE , the Lebesgue measure µ on
Γ restricted to ΓE . However, on ΓE the restricted Lebesgue measure and the microcanonical
measure only differ by a constant: λ = c µE , where c := 1/µE(ΓE) and hence whenever a
measure is absolutely continuous with µE it is also with λ and vice versa.
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The new and crucial assumption is ACP and the question is how this princi-
ple can be justified. What reason is there to restrict the class of measures that
we take into consideration as acceptable equilibrium measures to those that are
absolutely continuous with respect to the microcanonical measure? Malament
and Zabell respond to this problem by introducing yet another principle, the
‘displacement principle’ (DP). This principle posits that if of two measurable
sets in ΓE one is but a small displacement of the other, then it is plausible to
believe that the probability of finding the system’s micro-state in one set should
be close to that of finding it in the other (ibid., p. 346). This principle is inter-
esting because one can show that it is equivalent to the claim that probability
distributions are absolutely continuous with respect to the Lebesgue measure,
and hence the microcanonical measure, on ΓE (ibid., pp. 348-9).62

To sum up, the advantages of this method over the ‘standard account’ are
that it does not appeal to measurement, that it takes into account that SM
systems are ‘large’ (via Assumption 1), and that it does not make reference to
time averages at all. In fact, ergodicity is used only to justify the uniqueness of
the microcanonical measure.

The remaining question is what reasons there are to believe in DP. Malament
and Zabell offer little by way of justification: they just make some elusive appeal
to the ‘method by which the system is prepared or brought to equilibrium’ (ibid.,
p. 347.) So it is not clear how one gets from some notion of state preparation to
DP. But even if it was clear, why should the success of equilibrium SM depend
on the system being prepared in a particular way? This seems to add an anthro-
pocentric element to SM which, at least if one is not a proponent of the ontic
approach (referred to in §3.2.3.2), seems to be foreign to it.

The argument in support of Assumption 2 makes two further problematic
assumptions. First, it assumes equilibrium to be defined in terms of a stationary
distribution, which, as we have seen above, is problematic because it undercuts a
dynamical explanation of the approach to equilibrium (variants of this criticism
can be found in Sklar (1978) and Leeds (1989).

Second, it is based on the premise that the system in question is ergodic.
As we have seen above, many systems that are successfully dealt with by the
formalism of SM are not ergodic and hence the uniqueness theorem, on which
the argument in support of Assumption 2 is based, does not apply.

To circumvent this difficulty Vranas (1998) has suggested replacing ergodicity
with what he calls ε-ergodicity. The leading idea behind this move is to challenge
the commonly held belief that even if a system is just a ‘little bit’ non-ergodic,
then the uniqueness theorem fails completely (Earman and Redei 1996, p. 71).
Vranas points out that there is a middle ground between holding and failing
completely and then argues that this middle ground actually provides us with
everything we need.

62As Leeds (1989, p. 327) points out, Malament and Zabell’s proof is for Rn and they do
not indicate how the proof could be modified to apply to the energy hypersurface, where
translations can take one off the surface.
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Two measures λ1 and λ2 are ε-close iff for every measurable set A: |λ1(A)−
λ2(A)| ≤ ε, where ε is a small but finite number. The starting point of Vranas’
argument is the observation that we do not need p( · ) = λ: to justify Gibbsian
phase averaging along the lines suggested by Malament and Zabell all we need is
that p( · ) and λ are ε-close, as we cannot tell the difference between a probability
measure that is exactly equal to λ and one that is just a little bit different from
it. Hence we should replace Assumption 2 by Assumption 2’, that statement that
p( · ) and λ are ε-close. The question now is: how do we justify Assumption 2’?

If a system is non-ergodic then its phase space X is decomposable; that is,
there exist two sets, A ⊆ X and B := X \ A, with measure greater than zero
which are invariant under the flow. Intuitively, if the system is ‘just a little bit
non-ergodic’, then the system is ergodic on B and λ(A) � λ(B) (where, again,
λ is the microcanonical measure). This motivates the following definition: A
dynamical system (X,λ, φ) is ε-ergodic iff the system’s dynamics is ergodic on a
subset Y of X with λ(Y ) = 1− ε.63 Strict ergodicity then is the limiting case of
ε = 0. Furthermore, given two small but finite numbers ε1 and ε2, Vranas defines
λ2 to be ‘ε1/ε2-continuous’ with λ1 iff for every measurable set A: λ2(A) ≤ ε2 if
λ1(A) ≤ ε1 (Vranas 1998, p. 695).

Vranas then proves an ‘ε-version’ of the uniqueness theorem, the ε-equivalence
theorem (ibid., 703-5): if λ1 is ε1-ergodic and λ2 is ε1/ε2-continuous with respect
to λ1 and invariant, then λ1 and λ2 are ε3-close with ε3 = 2ε2 + ε1(1− ε1)−1.

Given this, the Malament and Zabell argument can be rephrased as follows:

(P1’) (X,φ, λ) is ε-ergodic.
(P2) p( · ) is invariant in time because this is the defining feature of
equilibrium probabilities.
(P3’) ε-ACP: p( · ) is ε/ε2-continuous with respect to λ.
(P4’) The ε-equivalence theorem.
Conclusion’: p( · ) and λ are ε3-close with ε3 = 2ε2 + ε(1− ε)−1.

The assessment of this argument depends on what can be said in favour
of (P1’) and (P3’), since (P4’) is a mathematical theorem and (P2) has not
been altered. In support of (P1’) Vranas (ibid., p. 695-98) reviews computational
evidence showing that systems of interest are indeed ε-ergodic. In particluar, he
mentions the following cases. A one-dimensional system of n self-gravitating
plane parallel sheets of uniform density was found to be strictly ergodic as n
increases (it reaches strict ergodicity for n = 11). The Fermi-Pasta-Ulam system
(a one dimensional chain of n particles with weakly nonlinear nearest-neighbour
interaction) is ε-ergodic for large n. There is good evidence that a Lennard-Jones
gas is ε-ergodic for large n and in the relevant energy range, i.e. for energies
large enough so that quantum effects do not matter. From these Vranas draws

63Vranas (1998, p. 695) distinguishes between ‘ε-ergodic’ and ‘epsilon-ergodic’, where a sys-
tem is epsilon-ergodic if it is ε-ergodic with ε tiny or zero. In what follows I always assume ε
to be tiny and hence do not distinguish between the two.
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the tentative conclusion that the dynamical systems of interest in SM are indeed
ε-ergodic. But he is clear about the fact that this is only a tentative conclusion
and that it would be desirable to have theoretical results.

The justification of (P3’) is more difficult. This does not come as a surprise
because Malament and Zabell did not present a justification for ACP either.
Vranas (ibid., pp. 700–2) presents some arguments based on the limited precision
of measurement but admits that this argument invokes premises that he cannot
justify.

To sum up, this argument enjoys the advantage over previous arguments
that it does not have to invoke strict ergodicity. However, it is still based on the
assumption that equilibrium is characterised by a stationary distribution, which,
as we have seen, is an obstacle when it comes to formulating a workable Gibbsian
non-equilibrium theory. In sum, it is still an open question whether the ergodic
programme can eventally explain in a satisfactory way why Gibbsian SM works.

3.3.3.2 Khinchin’s Programme and the Thermodynamic Limit Ergodic theory
works at a general level in that it makes no assumptions about the number of
degrees of freedom of the system under study and does not restrict the allowable
phase functions beyond the requirement that they be integrable. Khinchin (1949)
points out that this generality is not only unnecessary; actually it is the source of
the problems that this programme encounters. Rather than studying dynamical
systems at a general level, we should focus on those cases that are relevant
in statistical mechanics. This involves two restrictions. First, we only have to
consider systems with a large number of degrees of freedom; second, we only need
to take into account a special class of phase function, so-called sum functions.
A function is a sum function if it can be written as a sum over one-particle
functions:

f(x) =
n∑
i=1

fi(xi), (3.31)

where xi is the vector containing the position and momentum coordinates of
particle i (that is, xi ∈ R6 while x ∈ R6n) Under the assumption that the
Hamiltonian of the system is a sum function as well, Khinchin can prove the
following theorem:

Khinchin’s Theorem. For all sum functions f there are positive constants k1 and k2

such that

λ
“n

x ∈ ΓE :
˛̨̨
f∗(x)− f̄

f̄

˛̨̨
≥ k1 n

−1/4
o”

≤ k2 n
−1/4, (3.32)

where λ is the microcanonical measure.

This theorem is sometimes also referred to as ‘Khinchin’s ergodic theorem’; let us
say that a system satisfying the condition specified in Khinchin’s theorem is ‘K-



152 RECENT WORK ON THE FOUNDATIONS OF STATISTICAL MECHANICS

ergodic’.64 For a summary and a discussion of the proof see Batterman (1998, pp.
190-8), van Lith (2001b, pp. 83-90) and Badino (2006). Basically the theorem says
that as n becomes larger, the measure of those regions on the energy hypersurface
where the time and the space means differ by more than a small amount tends
towards zero. For any finite n, K-ergodicity is weaker than ergodicity in the sense
that the region where time and phase average do not coincide can have a finite
measure, while it is of measure zero if the system is ergodic; this discrepancy
vanishes for n→∞. However, even in the limit for n→∞ there is an important
difference between ergodicity and K-ergodicity: if K-ergodicity holds, it only
holds for a very special class of phase functions, namely sum-functions; ergodicity,
by contrast, holds for any λ-integrable function.

A number of problems facing an explanation of equilibrium SM based on
K-ergodicity need to be mentioned. First, like the afore-mentioned approaches
based on ergodicity, Khinchin’s programme associates the outcomes of measure-
ments with infinite time averages and is therefore vulnerable to the same objec-
tions. Second, ergodicity’s measure zero problem turns into a ‘measure k2 n

−1/4

problem’, which is worse because now we have to justify that a part of the
energy hypersurface of finite measure (rather than measure zero) can be disre-
garded. Third, the main motivation for focussing attention on sum-functions is
the claim that all relevant functions, i.e. the ones that correspond to thermody-
namic quantities, are of that kind. Batterman (1998, p. 191) points out that this
is too narrow as there are functions of interest that do not have this form.

A further serious difficulty is what Khinchin himself called the ‘methodologi-
cal paradox’ (Khinchin 1949, pp. 41-3). The proof of the above theorem assumes
the Hamiltonian to be a sum function (and this assumption plays a crucial rôle
in the derivation of the theorem). However, for an equilibrium state to arise to
begin with, the particles have to interact (collide), which cannot happen if the
Hamiltonian is a sum function. Khinchin’s response is to assume that there are
only short range interactions between the molecules (which is the case, for in-
stance, in a hard ball gas). If this is the case, Khinchin argues, the interactions
are effective only on a tiny part of the phase space and hence have no significant
effect on averages.

This response has struck many as unsatisfactory and ad hoc, and so the
methodological paradox became the starting point for a research programme
now known as the ‘thermodynamic limit’, investigating the question of whether
one can still prove ‘Khinchin-like’ results in the case of Hamiltonians with inter-
action terms. Results of this kind can be proven in the limit for n → ∞, if also
the volume V of the system tends towards infinity in such a way that the number
density n/V remains constant. This programme, championed among others by
Lanford, Mazur, Ruelle, and van der Linden, has reached a tremendous degree of
mathematical sophistication and defies summary in simple terms. Classic state-

64K-ergodicity should not be conflated with the property of being a K-system; i.e. being a
system having the Kolmogorov property.
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ments are Ruelle (1969, 2004); surveys and further references can be found in
Compagner (1989), van Lith (2001b, pp. 93-101) and Uffink (2007, pp. 1020-8).

A further problem is that for finite n K-ergodic systems need not be met-
rically transitive. This calls into question the ability of an approach based on
K-ergodicity to provide an answer to the question of why measured values co-
incide with microcanonical averages. Suppose there is some global constant of
motion other than H, and as a result the motion of the system remains confined
to some part of the energy hypersurface. In this case there is no reason to assume
that microcanonical averages with respect to the entire energy hypersurface co-
incide with measured values. Faced with this problem one could argue that each
system of that kind has a decomposition of its energy hypersurface into different
regions of non-zero measure, some ergodic and others not, and that, as n and V
get large, the average values of relevant phase functions get insensitive towards
the non-ergodic parts.

Earman and Rédei (1996, p. 72) argue against this strategy on the grounds
that it is straightforward to construct an infinity of normalised invariant mea-
sures that assign different weights to these regions than does the microcanonical
measure. However, phase averages with respect to these other measures can de-
viate substantially form microcanonical averages, and it is to be expected that
these predictions turn out wrong. But why? In a non-ergodic system there is
no reason to grant the microcanonical measure a special status and Khinchin’s
approach does not provide a reason to expect microcanonical averages rather
than any other average value to correspond to measurable quantities.

Batterman (1998) grants this point but argues that there is another reason
to expect correspondence with observed values; but this reason comes from a
careful analysis of renormalisation group techniques and their application to
the case at hand, rather than any feature of either Khinchin’s approach or the
thermodynamic limit. A discussion of these techniques is beyond the scope of this
review; the details of the case at hand are considered in Batterman (1998), and
a general discussion of renormalisation and its relation to issues in connection
with reductionism and explanation can be found in Batterman (2002).

3.3.4 Ontic Probabilities in Gibbs’ Theory
Two ontic interpretations of Gibbsian probabilities have been suggested in the
literature: frequentism and time averages. Let us discuss them in turn.

3.3.4.1 Frequentism A common way of looking at ensembles is to think about
them in analogy with urns, but rather than containing balls of different colours
they contain systems in different micro-states. This way of thinking about ρ
was first suggested in a notorious remark by Gibbs (1902, p. 163), in which he
observes that ‘[w]hat we know about a body can generally be described most ac-
curately and most simply by saying that it is one taken at random from a great
number (ensemble) of bodies which are completely described’. Although Gibbs
himself remained non-committal as regards an interpretation of probability, this
point of view naturally lends itself to a frequentist analysis of probabilities. In
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this vein Malament and Zabell (1980, p. 345) observe that one can regard Gibb-
sian probabilities as representing limiting relative frequencies within an infinite
ensemble of identical systems.

First appearances notwithstanding, this is problematic. The strength of fre-
quentism is that it grounds probabilities in facts about the world. There are
some legitimate questions for those who associate probabilities with infinite lim-
iting frequencies, as these are not experimental facts. However, frequentists of
any stripe agree that one single outcome is not enough to ground a probability
claim. But this is the best we can ever get in Gibbsian SM. The ensemble is a
fictitious entity; what is real is only the one system in the laboratory and so we
can make at most one draw from this ensemble. All the other draws would be
hypothetical. But on what grounds do we decide what the result of these draws
would be? It is obvious that these hypothetical draws do not provide a basis for
a frequentist interpretation of probabilities.

Another way of trying to ground a frequency interpretation is to understand
frequencies as given by consecutive measurements made on the actual system.
This move successfully avoids the appeal to hypothetical draws. Unfortunately
this comes at the price of another serious problem. Von Mises’ theory requires
that successive trials whose outcomes make up the sequence on which the relative
frequencies are defined (the collective) be independent. This, as von Mises himself
pointed out, is generally not the case if the sequence is generated by one and the
same system.65 So making successive measurements on the same system does
not give us the kind of sequences needed to define frequentist probabilities.

3.3.4.2 Time Averages Another interpretation regards Gibbsian probabilities
as time averages of the same kind as the ones we discussed in §3.2.4. On this
view, p

t
(R) in eq.3.23 is the average time that the system spends in region R.

As in the case of Boltzmannian probabilities, this is in need of qualification as
a relevant interval over which the time average is taken has to be specified and
the dependence on initial conditions has to vanish. If, again, we assume that the
system is ergodic on the energy hypersurface we obtain neat answers to these
questions (just as in the Boltzmann case).

Assuming the system to be ergodic solves two problems at once. For one, it
puts the time average interpretation on solid grounds (for the reasons discussed
in §3.2.4.2 in the context of the Boltzmannian approach). For another, it offers
an explanation of why the microcanonical distribution is indeed the right distri-
bution; i.e. it solves the uniqueness problem. This is important because even if
all interpretative issues were settled, we would still be left with the question of
which among the infinitely many possible distributions would be the correct one
to work with. The uniqueness theorem of ergodic theory answers this question

65Von Mises discussed this problem in connection with diffusion processes and suggested get-
ting around this difficulty by reconstructing the sequence in question, which is not a collective,
as a combination of two sequences that are collectives (von Mises 1939, Chapter 6). Whether
this is a viable solution in the context at hand is an open question.
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in an elegant way by stating that the microcanonical distribution is the only dis-
tribution absolutely continuous with respect to the Lebesgue measure (although
some argument still would have to be provided to establish that every accept-
able distribution has to be absolutely continuous with respect to the Lebesgue
measure).

However, this proposal suffers from all the difficulties mentioned in §3.2.4.3,
which, as we saw, are not easily overcome. A further problem is that it undercuts
an extension of the approach to non-equilibrium situations. Interpreting proba-
bilities as infinite time averages yields stationary probabilities. As a result, phase
averages are constant. This is what we expect in equilibrium, but it is at odds
with the fact that we witness change and observe systems approaching equilib-
rium departing from a non-equilibrium state. This evolution has to be reflected
in a change of the probability distribution, which is impossible if it is stationary
by definition. Hence the time average interpretation of probability together with
the assumption that the system is ergodic make it impossible to account for
non-equilibrium behaviour (Sklar 1973, p. 211; Jaynes 1983, p. 106; Dougherty
1993, p. 846; van Lith 2001a, p. 586).

One could try to circumvent this problem by giving up the assumption that
the system is ergodic and define p

t
(R) as a finite time average. However, the

problem with this suggestion is that it is not clear what the relevant time inter-
val should be, and the dependence of the time average on the initial condition
would persist. These problems make this suggestion rather unattractive. Another
suggestion is to be a pluralist about the interpretation of probability and hold
that probabilities in equilibrium have to be interpreted differently than prob-
abilities in non-equilibrium. Whatever support one might muster for pluralism
about the interpretation of probability in other contexts, it seems out of place
when the equilibrium versus non-equilibrium distinction is at stake. At least in
this case one needs an interpretation that applies to both cases alike (van Lith
2001a, p. 588).

3.3.5 The Approach to Equilibrium

The main challenge for Gibbsian non-equilibrium theory is to find a way to get
the Gibbs entropy moving. Before discussing different solutions to this problem,
let me again illustrate what the problem is. Consider the by now familiar gas
that is confined to the left half of a container (Vleft). Then remove the separating
wall. As a result the gas will spread and soon evenly fill the entire volume (Vtotal).
From a Gibbsian point of view, what seems to happen is that the equilibrium
distribution with respect to the left half evolves into the equilibrium distribution
with respect to the entire container; more specifically, what seems to happen
is that the microcanonical distribution over all micro-states compatible with
the gas being in Vleft, Γleft, evolves into the microcanonical distribution over all
states compatible with the gas being in Vtotal, Γtotal. The problem is, that this
development is ruled out by the laws of mechanics for an isolated system. The
time evolution of an ensemble density is subject to Liouville’s eq.3.27, according
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to which the density moves in phase space like an incompressible liquid, and
therefore it is not possible that a density that was uniform over Γleft at some
time can be uniform over Γtotal at some later point. Hence, as it stands, the
Gibbs approach cannot explain the approach to equilibrium.

3.3.5.1 Coarse-Graining The ‘official’ Gibbsian proposal is that this problem
is best addressed by coarse-graining the phase space; the idea is introduced
in Chapter XII of Gibbs (1902) and has since been endorsed, among others,
by Penrose (1970), Farquhar (1964), and all supporters of the programme of
stochastic dynamics discussed below. The procedure is exactly the same as in
the Boltzmann case (§3.2.2), with the exception that we now coarse-grain the
system’s γ-space rather than its µ-space.

The so-called coarse-grained density ρ̄ is defined as the density that is uniform
within each cell, taking as its value the average value in this cell of the original
continuous density ρ:

ρ̄ω(q, p, t) :=
1
δω

∫
ω(q,p)

ρ(q′, p′, t)dΓ′, (3.33)

where ω(q, p) is the cell in which the point (q, p) lies and δω is the Lebesgue
measure of a cell. Whether we work with ρ̄ω or ρ is of little importance to the
practitioner because for any phase function that does not fluctuate on the scale of
δω (which is true of most physically relevant phase functions) the phase average
with respect to ρ̄ω and ρ are approximately the same.

We can now define the coarse-grained entropy Sω:

Sω(ρ) := SG(ρ̄ω) = −k
B

∫
Γ

ρ̄ω log(ρ̄ω)dΓ (3.34)

One can prove that the coarse-grained entropy is always greater or equal to the
fine-grained entropy: Sω(ρ) ≥ SG(ρ); the equality holds only if the fine-grained
distribution is uniform over the cells of the coarse-graining (see Uffink 1995b, p.
155; Wehrl 1978, p. 229; Lavis 2004, p. 672).

What do we gain by working with ρ̄ω rather than with ρ? The main point
is that the coarse-grained density ρ̄ω is not governed by Liouville’s equation
and hence is not subject to the restrictions mentioned above. So it is, at least
in principle, possible for ρ̄ω to evolve in such a way that it will be uniform
over the portion of the phase space available to the system in equilibrium. This
state is referred to as ‘coarse-grained equilibrium’ (Ridderbos 2002, p. 69). The
approach to coarse-grained equilibrium happens if under the dynamics of the
system ρ becomes so scrambled that an equal portion of it is located in every
cell of the partition. Because the averaged density is ‘blind’ to differences within
each cell, the spread out states of the initial equilibrium condition will, on the
averaged level, look like a homogenous distribution. This is illustrated in fig. 3.10
for the example mentioned at the beginning of this subsection, where the initial
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density is constant over Γleft while the final density is expected to be constant
over Γtotal (this figure is adapted from Uffink 1995b, p. 154).

φt(Γleft)Γleft ρ

Fig. 3.10. Evolution into a quasi-equilibrium distribution

A fine-grained distribution which has evolved in this way, i.e. which appears
to be uniform at the coarse-grained level, is said to be in a quasi-equilibrium
(Blatt 1959, p. 749; Ridderbos 2002, p. 73). On the coarse-graining view, then,
all that is required to explain the approach to equilibrium in the Gibbs approach
is a demonstration that an arbitrary initial distribution indeed evolves into a
quasi-equilibrium distribution (Ridderbos 2002, p. 73).

The question then is under what circumstances this happens. The standard
answer is that the system has to be mixing (see §3.2.4.1 for a discussion of
mixing). This suggestion has some intuitive plausibility given the geometrical
interpretation of mixing, and it receives further support from the convergence
theorem (eq.3.20). In sum, the proposal is that we coarse-grain the system’s phase
space and then consider the coarse-grained entropy, which indeed increases if the
system is mixing.

What can be said in support of this point of view? The main thrust of argu-
ments in favour of coarse-graining is that even if there are differences between
the fine-grained and the coarse-grained density, we cannot empirically distin-
guish between them and hence there is no reason to prefer one to the other.
There are various facets to this claim; these are discussed but not endorsed in
Ridderbos (2002, p. 73). First, measurements have finite precision and if δω is
chosen so that it is below that precision, no measurement that we can perform
on the system will ever be able to tell us whether the true distribution is ρ or
ρ̄ω.

Second, as already observed above, the values of macroscopic variables cal-
culated using the coarse-grained density coincide with those calculated using the
fine-grained density (if the relevant phase function does not fluctuate so violently
as to fluctuate on the scale of δω). This is all we need because thermodynamic
equilibrium is defined in terms of the values of macroscopic parameters and as
long as these coincide there is no reason to prefer the fine-grained to a coarse-
grained density.
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This programme faces several serious difficulties. To begin with, there is the
problem that mixing is only defined, and so only achieved, for t → ∞, but
thermodynamic systems seem to reach equilibrium in finite time. One might try
to mitigate the force of this objection by saying that it is enough for a system to
reach an ‘almost mixed’ state in the relevant finite time. The problem with this
suggestion is that from the fact that a system is mixing nothing follows about
how fast it reaches a mixed state and hence it is not clear whether it becomes
‘almost mixed’ over the relevant observation times (see Berkovitz et al. 2006, p.
687). Moreover, mixing is too stringent a requirement for many realistic systems.
Mixing implies ergodicity and, a fortiori, if a system is not ergodic it cannot be
mixing (see §3.2.4.1). But there are relevant systems that fail to be ergodic,
and hence also fail to be mixing (as we have seen in §3.2.4.3). This is a serious
difficulty and unless it can be argued—as Vranas did with regards to ergodicity—
that systems which fail to be mixing are ‘almost mixing’ in some relevant sense
and reach some ‘almost mixed state’ in some finite time, an explanation of the
approach to equilibrium based on mixing is not viable.

Second, there is a consistency problem, because we now seem to have two
different definitions of equilibrium (Ridderbos 2002, p. 73). One is based on
the requirement that the equilibrium distribution be stationary; the other on
apparent uniformity. These two concepts of equilibrium are not co-extensive
and so we face the question of which one we regard as the constitutive one.
Similarly, we have two notions of entropy for the same system. Which one really
is the system’s entropy? However, it seems that this objection need not really
trouble the proponent of coarse-graining. There is nothing sacrosanct about the
formalism as first introduced above and, in keeping with the revisionary spirit of
the coarse-graining approach, one can simply declare that equilibrium is defined
by uniformity relative to a partition and that Sω is the ‘real’ entropy of the
system.

Third, as in the case of Boltzmannian coarse-graining, there is a question
about the justification of the introduction of a partition. The main justifica-
tion is based on the finite accuracy of observations, which can never reveal the
precise location of a system’s micro-state in its γ-space. As the approach to equi-
librium only takes place on the coarse-grained level, we have to conclude that
the emergence of thermodynamic behaviour depends on there being limits to the
observer’s measurement resolution. This, so the objection continues, is misguided
because thermodynamics does not appeal to observers of any sort and thermo-
dynamic systems approach equilibrium irrespective of what those witnessing this
process can know about the system’s micro-state.

This objection can be challenged on two grounds. First, one can mitigate the
force of this argument by pointing out that micro-states have no counterpart in
thermodynamics at all and hence grouping some of them together on the basis
of experimental indistinguishability cannot possibly lead to a contradiction with
thermodynamics. All that matters from a thermodynamic point of view is that
the macroscopic quantities come out right, and this is the case in the coarse-
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graining approach (Ridderbos 2002, p. 71). Second, the above suggestion does
not rely on there being actual observers, or actual observations taking place. The
claim simply is that the fine-grained distribution has to reach quasi-equilibrium.
The concept is defined relative to a partition, but there is nothing subjective
about that. Whether or not a system reaches quasi-equilibrium is an objective
matter of fact that depends on the dynamics of the system, but has nothing to
do with the existence of observers.

Those opposed to coarse-graining reply that this is besides the point because
the very justification for introducing a partition to begin with is an appeal to
limited observational capacities so that whether or not quasi-equilibrium is an
objective property given a particular partition is simply a non-issue. So, at bot-
tom, the disagreement seems to be over the question of whether the notion of
equilibrium is essentially a macroscopic one. That is, does the notion of equi-
librium make sense to creatures with unlimited observational powers? Or less
radically: do they need this notion? It is at least conceivable that for them the
gas indeed does not approach equilibrium but moves around in some very com-
plicated but ever changing patterns, which only look stable and unchanging to
those who cannot (or simply do not) look too closely. Whether or not one finds
convincing a justification of coarse-graining by appeal to limited observational
powers depends on how one regards this possibility.

Fourth, one can question the central premise of the argument for regarding
ρ̄ω as the relevant equilibrium distribution, namely that ρ̄ω and ρ are empirically
indistinguishable. Blatt (1959) and Ridderbos and Redhead (1998) argue that
this is wrong because the spin-echo experiment (Hahn 1950) makes it possible to
empirically discriminate between ρ or ρ̄, even if the size of the cells is chosen to
be so small that no direct measurement could distinguish between states within
a cell. For this reason, they conclude, replacing ρ with ρ̄ω is illegitimate and
an appeal to coarse-graining to explain the approach to equilibrium has to be
renounced.

In the spin-echo experiment, a collection of spins is placed in a magnetic field
~B pointing along the z-axis and the spins are initially aligned with this field (fig.
3.11).

z

x

y

Fig. 3.11. Spins aligned with a magnetic field

Then the spins are subjected to a radio frequency pulse, as a result of which they
are tilted by 90 degrees so that they now point in the x-direction (fig. 3.12).
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Fig. 3.12. Spins shifted 90◦ by a pulse

Due to the presence of the magnetic field ~B, the spins start precessing around
the z-axis and in doing so emit an oscillating electromagnetic pulse, the ‘free
induction decay signal’ (fig. 3.13; the curved dotted arrows indicate the direction
of rotation).
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Fig. 3.13. Precession of spins

This signal is the macroscopic evidence for the fact that all spins are aligned and
precess around the same axis. After some time this signal decays, indicating that
the spins are now no longer aligned and point in ‘random’ directions (fig. 3.14).
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Fig. 3.14. Signal decays and spins point in random directions

The reason for this is that the precession speed is a function of the field strength
of ~B and it is not possible to create an exactly homogeneous magnetic field.
Therefore the precession frequencies of the spins differ slightly, resulting in the
spins pointing in different directions after some time t = τ has elapsed. At that
point a second pulse is applied to the system, tilting the spins in the x− z plane
by 180 degrees (fig. 3.15; the straight dotted arrows indicate the direction of the
spins before the pulse).

The result of this is a reversal of the order of the spins in the sense that the
faster spins that were ahead of the slower ones are now behind the slower ones
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Fig. 3.15. Spins after a second pulse

(fig. 3.16; s1 and s2 are two spins, s′1 and s′2 their ‘tilted versions’).
However, those that were precessing faster before the second pulse keep doing

so after the pulse and hence ‘catch up’ with the slower ones. After time t = 2τ
all spins are aligned again and the free induction decay signal reappears (the
‘echo pulse’). This is the macroscopic evidence that the original order has been
restored.66

s2
s’1 s1

s’2

Fig. 3.16. Order of spins (in terms of speed) is reversed

At time t = τ , when all spins point in random directions, ρ̄ is uniform and the
system has reached its coarse-grained equilibrium. From a coarse-grainer’s point
of view this is sufficient to assert that the system is in equilibrium, as we cannot
distinguish between true and coarse-grained equilibrium. So according to Blatt
and Redhead and Ridderbos the spin-echo experiment shows that this rationale
is wrong because we actually can distinguish between true and coarse-grained
equilibrium. If the system was in true equilibrium at t = τ the second radio pulse
flipping the spins by 180 degrees would not have the effect of aligning the spins
again at t = 2τ ; this only happens because the system is merely in a coarse-
grained equilibrium. Hence equilibrium and quasi-equilibrium distributions can
be shown to display radically different behaviour. Moreover, this difference is

66It is often said that this experiment is the empirical realisation of a Loschmidt velocity
reversal (in which a ‘Loschmidt demon’ instantaneously transforms the velocities ~vi of all
particles in the system into −~vi). This is incorrect. The directions of precession (and hence the
particles’ velocities) are not reversed in the experiment. The reflection of the spins in the x− z
plane results in a reversal of their ordering while leaving their velocities unaltered. The grain
of truth in the standard story is that a reversal of the ordering with unaltered velocities is in
a sense ‘isomorphic’ to a velocity reversal with unaltered ordering.
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such that we can experimentally detect it without measuring microdynamical
variables: we simply check whether there is an echo-pulse at t = 2τ . This pulls
the rug from under the feet of the coarse-grainer and we have to conclude that it is
therefore not permissible to base fundamental arguments in statistical mechanics
on coarse-graining (Blatt 1959, p. 746).

What is the weight of this argument? Ridderbos (2002, p. 75) thinks that the
fact that we can, after all, experimentally distinguish between ρ̄ and ρ, and hence
between ‘real’ equilibrium and quasi-equilibrium, is by itself a sufficient reason
to dismiss the coarse-graining approach. Others are more hesitant. Ainsworth
(2005, pp. 626-7) points out that, although valid, this argument fails to estab-
lish its conclusion because it assumes that for coarse-graining approach to be
acceptable ρ̄ and ρ must be empirically indistinguishable. Instead, he suggests
appealing to the fact, proffered by some in support of Boltzmannian coarse-
graining, that there is an objective separation of the micro and macro scales (see
§3.2.7). He accepts this point of view as essentially correct and submits that the
same response is available to the Gibbsian: coarse-graining can be justified by an
appeal to the separation of scales rather than by pointing to limitations of what
we can observe. As the notion of equilibrium is one that inherently belongs to
the realm of the macroscopic, coarse-grained equilibrium is the correct notion of
equilibrium, irrespective of what happens at the micro scale. However, as I have
indicated above, the premise of this argument is controversial since it is not clear
whether there is indeed an objective separation of micro and macro scales.

Ridderbos and Redhead make their case against coarse-graining by putting
forward two essentially independent arguments. Their first argument is based on
theoretical results. They introduce a mathematical model of the experiment and
then show that the coarse-grained distribution behaves in a way that leads to
false predictions. They show that the system reaches a uniform coarse-grained
distribution over the entire phase space at t = τ (as one would expect), but then
fails to evolve back into a non-equilibrium distribution under reversal, so that,
in coarse-grained terms, the system is still described by a uniform distribution
at t = 2τ (1998, p. 1250). Accordingly, the coarse-grained entropy reaches its
maximum at t = τ and does not decrease as the spins evolve back to their
initial positions. Hence, the coarse-grained entropy is still maximal when the
echo pulse occurs and therefore the occurrence of the echo is, from a coarse-
grained perspective, completely miraculous (1998, p. 1251).

Their second argument is based on the assumption that we can, somehow,
experimentally observe the coarse-grained entropy (as opposed to calculating
it in the model). Then we face the problem that observational results seem to
tell us that the system has reached equilibrium at time t = τ and that after
the application of the second pulse at that time evolves away from equilibrium;
that is, we are led to believe that the system behaves anti-thermodynamically.
This, Ridderbos and Redhead (1998, p. 1251) conclude, is wrong because the
experiments do not actually contradict the Second Law.
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So the experimental results would stand in contradiction both with the the-
oretical results predicting that the coarse-grained entropy assumes its maximum
value at t = 2τ and with the second law of thermodynamics, which forbids high
to low entropy transitions in isolated systems (and the spin echo system is iso-
lated after the second pulse). This, according to Ridderbos and Redhead, is a
reductio of the coarse-graining approach.67

These arguments have not gone unchallenged. The first argument has been
criticised by Lavis (2004) on the grounds that the behaviour of ρ̄ and the coarse-
grained entropy predicted by Ridderbos and Redhead is an artifact of the way
in which they calculated these quantities. There are two methods for calculating
ρ̄. The first involves a coarse-graining of the fine-grained distribution at each
instant of time; i.e. the coarse-grained distribution at time t is determined by
first calculating the fine-grained distribution at time t (on the basis of the time
evolution of the system and the initial distribution) and then coarse-graining
it. The second method is based on re-coarse-graining as time progresses; i.e.
the coarse-grained distribution at time t is calculated by evolving the coarse-
grained distribution at an earlier time and then re-coarse-graining. Lavis points
out that Ridderbos and Redhead use the second method: they calculate ρ̄ at
time t = 2τ by evolving ρ̄ at time t = τ forward in time. For this reason, the fact
that they fail to find ρ̄ returning to its initial distribution is just a manifestion of
the impossibility of ‘un-coarse-graining’ a coarse-grained distribution. Lavis then
suggests that we should determine that coarse-grained distribution at some time
t by using the first method, which, as he shows, yields the correct behaviour: the
distribution returns to its initial form and the entropy decreases in the second
half of the experiment, assuming its initial value at t = 2τ . Hence the echo-pulse
does not come as a surprise after all.

The question now is which of the two coarse-graining methods one should
use. Although he does not put it quite this way, Lavis’ conclusion seems to be
that given that there are no physical laws that favour one method over the
other, the principle of charity should lead us to choose the one that yields the
correct results. Hence Ridderbos and Redhead’s result has no force against the
coarse-graining.

As regards the second argument, both Lavis (2004) and Ainsworth (2005)
point out that the decrease in entropy during the second half of the experiment
need not trouble us too much. Ever since the work of Maxwell and Boltzmann
‘entropy increase in an isolated system is taken to be highly probable but not
certain, and the spin-echo model, along with simulations of other simple models,
is a nice example of the working of the law’ (Lavis 2004, p. 686). On this view,
the spin-echo experiment simply affords us one of these rare examples in which,

67Their own view is that the fine-grained entropy is the correct entropy and that we were
wrong to believe that the entropy ever increased. Despite appearances, the thermodynamic
entropy does not increase between t = 0 and t = τ and hence there is no need for it to decrease
after t = τ in order to resume its initial value at t = 2τ ; it is simply constant throughout the
experiment. However, this view is not uncontroversial (Sklar 1993, pp. 253-4).
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due to skilful engineering, we can prepare a system in one of these exceptional
states which evolve from high to low entropy.

3.3.5.2 Interventionism One of the crucial assumptions, made more or less
tacitly so far, is that the systems under consideration are isolated. This, needless
to say, is an idealising assumption that can never be realised in practice. Real sys-
tems cannot be perfectly isolated from their environment and are always subject
to interactions; for instance, it is impossible to shield a system from gravitation.
Blatt (1959) suggested that taking systems to be isolated not only fails to be the
harmless idealisation that it is generally believed to be; it actually is the source
of the problem. This recognition is the starting point for the interventionist pro-
gramme, at the heart of which lies the idea that real systems are open in that
they are constantly subject to outside perturbations, and that it is exactly these
perturbations that drive the system into equilibrium.

In more detail, the leading idea is that every system interacts with its envi-
ronment (the gas, for instance, collides with the wall of the container and the
walls interact in many different ways with their surroundings), and that these
interactions are ‘in principle not amenable to a causal description, and must of
necessity be described in statistical terms’ (Blatt 1959, p. 751, original empha-
sis). The perturbations from outside serve as a kind of ‘stirring mechanism’ or
‘source of randomness’ that drives the system around randomly in the phase
space, in much the same way as it would be the case if the system was mix-
ing. As a consequence, the observable macroscopic quantities are soon driven
towards their equilibrium values. This includes the Gibbs entropy; in an open
system Liouville’s theorem no longer holds and there is nothing to prevent the
Gibbs entropy from increasing.68

Of course, from the fact that the Gibbs entropy can increase it does not
follow that it actually does increase; whether or not this is the case depends on
the system as well as the properties of the outside perturbations. Blatt (1959)
and Ridderbos and Redhead (1998) assure us that in realistic model systems
one can prove this to be the case. Granting this, we have an elegant explanation
of why and how systems approach equilibrium, which also enjoys the advantage
that no revision of the classical laws is needed.69

A common objection against this suggestion points out that we are always
free to consider a larger system, consisting of our ‘original’ system and its en-
vironment. For instance, we can consider the ‘gas cum box’ system, which, pro-
vided that classical mechanics is a universal theory, is also governed by classical
mechanics. So we are back to where we started. Interventionism, then, seems

68It is a curious fact about the literature on the subject that interventionism is always
discussed within the Gibbs framework. However, it is obvious that interventionism, if true,
would also explain the approach to equilibrium in the Boltzmannian framework as it would
explain why the state of the system wanders around randomly on the energy surface, which is
needed for it to ultimately end up in the equilibrium region (see §3.2.3.1).

69For a discussion of interventionism and time-reversal see Ridderbos and Redhead (1998,
pp. 1259-62) and references therein.
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wrong because it treats the environment as a kind of deus ex machina that is
somehow ‘outside physics’; but the environment is governed by the fundamental
laws of physics just as the system itself is and so it cannot do the job that the
interventionist has singled out for it to do.

The interventionist might now reply that the ‘gas cum box’ system has an
environment as well and it is this environment that effects the desired perturba-
tions. This answer does not resolve the problems, of course. We can now consider
an even larger system that also encompasses the environment of the ‘gas cum
box’ system. And we can keep expanding our system until the relevant system
is the entire universe, which, by assumption, has no environment any more that
might serve as a source of random perturbations.

Whether this constitutes a reductio of the interventionist programme depends
on one’s philosophical commitments. The above argument relies on the premise
that classical mechanics (or quantum mechanics, if we are working within quan-
tum SM) is a universal theory, i.e. one that applies to everything that there
is without restrictions. This assumption, although widely held among scientists
and philosophers alike, is not uncontroversial. Some have argued that we cannot
legitimately claim that laws apply universally. In fact, laws are always tested in
highly artificial laboratory situations and claiming that they equally apply out-
side the laboratory setting involves an inductive leap that is problematic. Hence
we have no reason to believe that classical mechanics applies to the universe as
a whole; see for instance Reichenbach (1956) and Cartwright (1999) for a dis-
cussion of this view. This, if true, successfully undercuts the above argument
against interventionism.70

There is a way around the above objection even for those who do believe in
the generality of laws, namely to deny Blatt’s assumption that the environment
needs to be genuinely stochastic. Pace Blatt, that the environment be genuinely
stochastic (i.e. as governed by indeterministic laws rather than classical mechan-
ics) is not an indispensable part of the interventionist programme. As Ridderbos
and Redhead (1998, p. 1257) point out, all that is required is that the system
loses coherence, which can be achieved by dissipating correlations into the en-
vironment. For observations restricted to the actual system, this means that
correlational information is not available. But the information is not lost; it has
just been ‘dislocated’ into the degrees of freedom pertaining to the environment.

The question then becomes whether the universe as a whole is expected to
approach equilibrium, or whether thermodynamic behaviour is only required to
hold for a subsystem of the universe. Those who hold that the ‘dissipation’ of cor-
relational information into environmental degrees of freedom is enough to explain

70Interventionists are sometimes charged with being committed to an instrumentalist take on
laws, which, the critics continue, is an unacceptable point of view. This is mistaken. Whatever
one’s assessment of the pros and cons of instrumentalism, all the interventionist needs is the
denial that the laws (or more specifically, the laws of mechanics) are universal laws. This is
compatible with realism about laws understood as providing ‘local’ descriptions of ‘parts’ of
the universe (a position sometime referred to as ‘local realism’).
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the approach to equilibrium are committed to this view. Ridderbos and Redhead
are explicit about this (1998, pp. 1261-2). They hold that the fine-grained Gibbs
entropy of the universe is indeed constant since the universe as a whole has no
outside, and that there is no approach to equilibrium at the level of the universe.
Moreover, this does not stand in conflict with the fact that cosmology informs us
that the entropy of the universe is increasing; cosmological entropies are coarse-
grained entropies and, as we have seen above, there is no conflict between an
increase in coarse-grained entropy and the constancy of the fine-grained Gibbs
entropy. Ridderbos and Redhead acknowledge that the question now is whether
the claim that the Gibbs entropy of the universe is constant is true, which is an
issue that has to be settled empirically.

3.3.5.3 Changing the Notion of Equilibrium One of the main problems facing
Gibbsian non-equilibrium theory is that under a Hamiltonian time evolution a
non-stationary distribution cannot evolve into a stationary one (see §3.3.2.4).
Hence strict stationarity is too stringent a requirement for equilibrium. Nev-
ertheless, it seems plausible to assume that an equilibrium distribution has to
approximate a stationary distribution in some relevant sense. What is this rele-
vant sense?

Van Lith suggested turning the desired result into a definition and replacing
strict stationarity with the requirement that the distribution be such that the
phase average of every function in a physically relevant set of functions only
fluctuates mildly around its average value (van Lith 1999, p. 114). More precisely,
let Ω be a class of phase functions f(x) corresponding to macroscopically relevant
quantities. Then the system is in equilibrium from time τ onwards iff for every
function f(x) ∈ Ω there is a constant cf such that:

|
∫
f(x)ρt(x)dΓ− cf | ≤ εf , (3.35)

where εf is a small number (which can be different for every f). This definition of
equilibrium seems to have the advantage of preserving all the desirable features
of equilibrium while no longer running into the problem that equilibrium can
never be reached.

However, from the fact that an arbitrary non-equilibrium distribution can
reach equilibrium thus defined it does not follow that it actually does. What
conditions does the dynamics of a system have to meet in order for the approach
to equilibrium to take place? Van Lith points out that being mixing is a sufficient
condition (van Lith 1999, p. 114) because the Convergence Theorem (see §3.2.4.1)
states that in the limit all time averages converge to the microcanonical averages,
and hence they satisfy the above definition.

But this proposal suffers from various problems. First, as van Lith herself
points out (1999, p. 115), the proposal does not contain a recipe to get the (fine-
grained) Gibbs entropy moving; hence the approach to equilibrium need not be
accompanied by a corresponding increase in the Gibbs entropy.
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Second, as we have seen above, mixing is too stringent a condition: it is not
met by many systems of interest. Remedy for this might be found in the reali-
sation that less than full-fledged mixing is needed to make the above suggestion
work. In fact, all we need is a condition that guarantees that the Convergence
Theorem holds (Earman and Redei 1996, p. 74; van Lith 1999, p. 115). One con-
dition of that sort is that the system has to be mixing for all f ∈ Ω. The question
then is, what this involves. This question is difficult, if not impossible to answer,
before Ω is precisely specified. And even then there is the question of whether
the convergence is sufficiently rapid to account for the fact that thermodynamic
systems reach equilibrium rather quickly.71

3.3.5.4 Alternative Approaches Before turning to the epistemic approach, I
would like to briefly mention three other approaches to non-equilibrium SM;
lack of space prevents me from discussing them in more detail.

Stochastic Dynamics. The leading idea of this approach is to replace the
Hamiltonian dynamics of the system with an explicity probabilistic law of evo-
lution. Characteristically this is done by coarse-graining the phase space and
then postulating a probabilistic law describing the transition from one cell of
the partition to another one. Liouville’s theorem is in general not true for such
a dynamics and hence the problem of the constancy of the Gibbs entropy does
not arise. Brief introductions can be found in Kreuzer (1981, Chapter 10), Reif
(1985, Chapter 15) and Honerkamp (1998, Chapter 5); detailed expositions of
the approach include Penrose (1970; 1979), Mackey (1989; 1992), and Streater
(1995).

The main problem with this approach is that its probabilistic laws are put
in ‘by hand’ and are not derived from the underlying dynamics of the system;
that is, it is usually not possible to derive the probabilistic laws from the un-
derlying deterministic evolution and hence the probabilistic laws are introduced
as independent postulates. However, unless one can show how the transition
probabilities postulated in this approach can be derived from the Hamiltonian
equations of motion governing the system, this approach does not shed light on
how thermodynamical behaviour emerges from the fundamental laws governing
a system’s constituents. For critical discussions of the stochastic dynamics pro-
gramme see Sklar (1993, Chapters 6 and 7), Callender (1999, pp. 358-64) and
Uffink (2007, pp. 1038-63).

The Brussels School (sometimes also ‘Brussels-Austin School’). An approach
closely related to the Stochastic Dynamics programme has been put forward by
the so-called Brussels School, led by Ilya Prigogine. The central contention of
this programme is that if the system exhibits sensitive dependence on initial
conditions (and most systems do) the very idea of a precise micro-state given
by a point in phase space ceases to be meaningful and should be replaced by an

71Another alternative definition of equilibrium, which also applies to open systems, has been
suggested by Pitowsky (2001, 2006), but for a lack of space I cannot further discuss this
suggestion here.
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explicitly probabilistic description of the system in terms of open regions of the
phase space, i.e. by a Gibbs distribution function. This programme, if successful,
can be seen as providing the sought after justification for the above-mentioned
shift from a Hamiltonian micro dynamics to an explicitly probabilistic scheme.
These claims have been challenged on different grounds; for presentations and
critical discussions of the ideas of the Brussels School see Batterman (1991),
Bricmont (1996), Karakostas (1996), Lombardi (1999, 2000), Edens (2001) and
Bishop (2004).

An approach that is similar to the programme of the Brussels School in that
it denies that the conceptual framework of classical mechanics, in particular the
classical notion of a state, is adequate to understand SM, has been suggested by
Krylov. Unfortunately he died before he could bring his programme to comple-
tion, and so it is not clear what form his ideas would have taken in the end. For
philosophical discussions of Krylov’s programme see Batterman (1990), Rédei
(1992) and Sklar (1993, pp. 262-9).

The BBGKY Hierarchy. The main idea of the BBGKY (after Bogolyubov,
Born, Green, Kirkwood, and Yvon) approach is to describe the evolution of
an ensemble by dint of a reduced probability density and then derive (some-
thing like) a Boltzmann equation for this density, which yields the approach to
equilibrium. The problem with the approach is that, just as in the case of the
Boltzmann’s (early) theory, the irreversibility is a result of (something like) the
Stosszahlansatz, and hence all its difficulties surface again at this point. For a
discussion of this approach see Uffink (2007, pp. 1034-8).

3.3.6 The Epistemic Approach

The approaches discussed so far are based on the assumption that SM probabil-
ities are ontic (see §3.2.3.2). It is this assumption that those who argue for an
epistemic interpretation deny. They argue that SM probabilities are an expres-
sion of what we know about a system, rather than a feature of a system itself.
This view can be traced back to Tolman (1938) and has been developed into
an all-encompassing approach to SM by Jaynes in a series of papers published
(roughly) between 1955 and 1980, some of which are gathered in Jaynes (1983).72

At the heart of Jaynes’ approach to SM lies a radical reconceptualisation of
what SM is. On his view, SM is about our knowledge of the world, not about the
world itself. The probability distribution represents our state of knowledge about
the system at hand and not some matter of fact about the system itself. More
specifically, the distribution represents our lack of knowledge about a system’s
micro-state given its macro condition; and, in particular, entropy becomes a
measure of how much knowledge we lack. As a consequence, Jaynes regards SM
as a part of general statistics, or ‘statistical inference’, as he puts it:

72In this subsection I focus on Jaynes’ approach. Tolman’s view is introduced in his (1938,
pp. 59–70); for a discussion of Tolman’s interpretation of probability see Uffink (1995b, pp.
166–7).
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Indeed, I do not see Predictive Statistical Mechanics and Statistical Inference as differ-
ent subjects at all; the former is only a particular realization of the latter [...] Today, not
only do Statistical Mechanics and Statistical Inference not appear to be two different
fields, even the term ‘statistical’ is not entirely appropriate. Both are special cases of
a simple and general procedure that ought to be called, simply, “inference”. (Jaynes
1983, pp. 2–3)

The questions then are: in what way a probability distribution encodes a lack of
knowledge; according to what principles the correct distribution is determined;
and how this way of thinking about probabilities sheds any light on the founda-
tion of SM. The first and the second of these questions are addressed in §3.3.6.1;
the third is discussed in §3.3.6.2.

3.3.6.1 The Shannon Entropy Consider a random variable x which can take
any of the m discrete values in X = {x1, ..., xm} with probabilities p(xi); for
instance, x can be the number of spots showing on the next roll of a die, in
which case X = {1, 2, 3, 4, 5, 6} and the probability for each even is 1/6. The
Shannon entropy of the probability distribution p(xi) is defined (Shannon 1949)
as:

S
S
(p) := −

m∑
i=1

p(xi) log(p(xi)), (3.36)

which is a quantitative measure for the uncertainty of the outcome. If the prob-
ability for one particular outcome is one while the probabilities for all other
outcomes are zero, then there is no uncertainty and S

S
equals zero; S

S
reaches

its maximum for a uniform probability distribution, i.e. p(xi) = 1/m for all
i, in which case we are maximally uncertain about the outcome; an accessible
discussion of the relation between the Shannon entropy and uncertainty can be
found Jaynes (1994, Chapter 11); see Cover and Thomas (1991) for a detailed
treatment.

Sometimes we are given X but fail to know the p(xi). In this case Jaynes’s
maximum entropy principle (MEP) instructs us to choose that distribution p(xi)
for which the Shannon entropy is maximal (under the constraint

∑m
i=1 p(xi) = 1).

For instance, from this principle it follows immediately that we should assign
p = 1/6 to each number of spots when rolling the die. If there are constraints that
need to be taken into account then MEP instructs us to choose that distribution
for which S

S
is maximal under the given constraints. The most common type of

constraint is that the expectation value for a particular function f has a given
value c:

〈f〉 :=
m∑
i=1

f(xi)p(xi) = c. (3.37)

This can be generalised to the case of a continuous variable, i.e. X = (a, b),
where (a, b) is an interval of real numbers (the boundaries of this interval can
be finite or infinite). The continuous Shannon entropy is
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S
S
(p) := −

∫ b

a

p(x) log[p(x)]dx, (3.38)

where p(x) is a probability density over (a, b).73 So for a continuous variable the
most common type of constraint is

〈f〉 :=
∫ b

a

f(x)p(x)dx = c, (3.39)

and MEP tells us to choose p(x) such that it maximises S
S
(p) under the given

constraints.
Why is MEP compelling? The intuitive idea is that we should always choose

the distribution that corresponds to a maximal amount of uncertainty, i.e. is
maximally non-committal with respect to the missing information. But why is
this a sound rule? In fact MEP is fraught with controversy; and, to date, no
consensus on its significance, or even cogency, has been reached. However, debates
over the validity of MEP belong to the foundations of statistical inference in
general and as such they are beyond the scope of this review; for discussions
see, for instance, Lavis (1977), Denbigh and Denbigh (1985), Lavis and Milligan
(1985, §5), Shimony (1985), Seidenfeld (1986), Uffink (1995a; 1996a), Howson
and Urbach (2006, pp. 276–88).

In what follows let us, for the sake of argument, assume that MEP can be
justified satisfactorily and discuss what it has to offer for the foundations of SM.
But before moving on, a remark about the epistemic probabilities here employed
is in place. On the current view, epistemic probabilities are not subjective, i.e.
they do not reduce to the personal opinion of individual observers, as would be
the case in a personalist Bayesian theory (such as de Finetti’s). On the contrary
Jaynes advocates an ‘impersonalism’ that bases probability assignments solely
on the available data and MEP; anybody’s personal opinions do not enter the
scene at any point. Hence, referring to Jaynes’ position as ‘subjectivism’ is a—
frequently used—misnomer.

3.3.6.2 MEP and SM The appeal of MEP for equilibrium SM lies in the fact
that the continuous Shannon entropy is equivalent to the Gibbs entropy (3.28) up
to the multiplicative constant k

B
if in eq.3.38 we takeX to be the phase space and

ρ the probability distribution. Gibbsian equilibrium distributions are required to
maximise S

G
under certain constraints and hence, trivially, they also satisfy

MEP. For an isolated system, for instance, the maximum entropy distribution
is the microcanonical distribution. In fact, even more has been achieved: MEP
not only coincides with the Gibbsian maximum entropy principle introduced
in §3.3.1; on the current view, this principle, which above has been postulated

73This generalisation is problematic in many respects; and for the continuum limit to be
taken properly, a background measure and the relative entropy need to be introduced. In the
simplest case where the background measure is the Lebesgue measure we retrieve eq.3.38. For
a discussion of this issue see Uffink (1995a, pp. 235–9).
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without further explanation, is justified because it can be understood as a version
of MEP.

As we have seen at the beginning of this subsection, Jaynes sees the aim of
SM as making predictions, as drawing inferences. This opens a new perspective
on non-equilibrium SM, which, according to Jaynes, should refrain from trying to
explain the approach to equilibrium by appeal to dynamical or other features of
the system and only aim to make predictions about the system’s future behaviour
(1983, 2). Once this is understood, the puzzle of the approach to equilibrium has
a straightforward two-step answer. In Sklar’s (1993, pp. 255–257) reconstruction,
the argument runs as follows.

The first step consists in choosing the initial distribution. Characteristic non-
equilibrium situations usually arise from the removing of a constraint (e.g. the
opening of a shutter) in a particular equilibrium situation. Hence the initial
distribution is chosen in the same way as an equilibrium distribution, namely
by maximising the Shannon entropy S

S
relative to the known macroscopic con-

straints. Let ρ0(q, p, t0) be that distribution, where t0 is the instant of time at
which the constraint in question is removed. Assume now that the experimental
set-up is such that a set of macroscopic parameters corresponding to the phase
functions fi, i = 1, ..., k, are measured. At time t0 these have as expected values

f̄i(t0) =
∫
fi(q, p) ρ0(q, p, t0)dΓ, i = 1, ..., k. (3.40)

Furthermore we assume that the entropy which we determine in an actual ex-
periment, the experimental entropy S

e
, at time t0 is equal to the Gibbs entropy:

S
e
(t0) = S

S
(ρ0(t0)).

The second step consists in determining the distribution and the entropy of
a system at some time t1 > t0. To this end we first use Liouville’s equation to
determine the image of the initial distribution under the dynamics of the system,
ρ0(t1), and then calculate the expectation values of the observable parameters
at time t1:

f̄i(t1) =
∫
fi(q, p) ρ0(q, p, t1)dΓ, i = 1, ..., k. (3.41)

Now we calculate a new density ρ1(q, p, t1), which maximises the Shannon en-
tropy under the constraints that∫

fi(q, p) ρ1(q, p, t1)dΓ = f̄i(t1), i = 1, ..., k. (3.42)

The experimental entropy of the system at t1 then is S
e
(t1) = S

S
(ρ1(t1)). This

entropy is greater than or equal to S
e
(t0) for the following reason. By Liouville’s

theorem we have S
S
(ρ0(t0)) = S

S
(ρ0(t1)). Both S

S
(ρ0(t1)) and S

S
(ρ1(t1)) sat-

isfy the constraints in Equation (3.42). By construction, S
S
(ρ1(t1)) is maximal

relative to these constraints; this need not be the case for S
S
(ρ0(t1)). Therefore

S
e
(t0) ≤ S

e
(t1). This is Jaynes’ justification of the Second Law.
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Jaynes’ epistemic approach to SM has several interesting features. Unlike
the approaches that we have discussed so far, it offers a clear and cogent inter-
pretation of SM probabilities, which it views as rational degrees of belief. This
interpretation enjoys the further advantage over its ontic competitors that it can
dispense with ensembles. On Jaynes’ approach there is only one system, the one
on which we are performing our experiments, and viewing probabilities as reflect-
ing our lack of knowledge about this system rather than some sort of frequency
renders ensembles superfluous. And most importantly, the problems so far that
beset non-equilibrium theory no longer arise: the constancy of the Gibbs entropy
becomes irrelevant because of the ‘re-maximising’ at time t1, and the stationarity
of the equilibrium distribution is no longer an issue because the dynamics of the
probability distribution is now a function of both our epistemic situation and
the dynamics of the system, rather than only Liouville’s equation. And last but
not least—and this is a point that Jaynes himself often emphasised—all this is
achieved without appealing to complex mathematical properties like ergodicity
or even mixing.

3.3.6.3 Problems Let us discuss Jaynes’ approach to non-equilibrium SM first.
Consider a sequence t0 < t1 < t2 < ... of increasing instants of time and con-
sider the entropy Se(tj), j = 0, 1, ... at these instants; all the Se(tj), j ≥ 2 are
calculated with eq.3.42 after substituting ρj for ρ1. Conformity with the Second
Law would require that S

e
(t0) ≤ S

e
(t1) ≤ S

e
(t2) ≤ .... However, this is generally

not the case (Lavis and Milligan 1985, 204; Sklar 1993, 257–258) because the
experimental entropy S

e
is not necessarily a monotonically increasing function.

Jaynes’ algorithm to calculate the Se(tj) can only establish that Se(t0) ≤ Se(tj),
for all j > 0 but it fails to show that Se(ti) ≤ Se(tj), for all 0 < i < j; in fact, it
is indeed possible that S

e
(ti) > S

e
(tj) for some i < j.

A way around this difficulty would be to use ρj−1(tj−1) to calculate ρj(tj),
rather than ρ0(t0). This would result in the sequence becoming monotonic, but
it would have the disadvantage that the entropy curve would become dependent
on the sequence of instants of time chosen (Lavis and Milligan ibid.). This seems
odd even from a radically subjectivist point of view: why should the value of Se
at a particular instant of time, depend on earlier instants of time at which we
chose to make predictions, or worse, why should it depend on us having made
any predictions at all?

In equilibrium theory, a problem similar to the one we discussed in connection
with the ergodic approach (§3.3.3) arises. As we have seen in Equation (3.40),
Jaynes also assumes that experimental outcomes correspond to phase averages
as given in Equation (3.25). But why should this be the case? It is correct that
we should rationally expect the mean value of a sequence of measurements to
coincide with the phase average, but prima facie this does not imply anything
about individual measurements. For instance, when throwing a die we expect
the mean of a sequence of events to be 3.5; but we surely don’t expect the die
to show 3.5 spots after any throw! So why should we expect the outcome of a
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measurement of a thermodynamic parameter to coincide with the phase average?
For this to be the case a further assumption seems to be needed, for instance
(something like) Khinchin’s assumption that the relevant phase functions assume
almost the same value for almost all points of phase space (see §3.3.3.2)

A further problem is that the dynamics of the system does not play any
rôle in Jaynes’ derivation of the microcanonical distribution (or any other equi-
librium distribution that can be derived using MEP). This seems odd because
even if probability distributions are eventually about our (lack of) knowledge,
it seems that what we can and cannot know must have something to do with
how the system behaves. This point becomes particularly clear from the follow-
ing considerations (Sklar 1993, pp. 193–4). Jaynes repeatedly emphasised that
ergodicity—or the failure thereof—does not play any rôle in his account. This
cannot be quite true. If a system is not ergodic then the phase space decomposes
into two (or more) invariant sets (see §3.2.4.1). Depending on what the initial
conditions are, the system’s state may be confined to some particular invariant
set, where the relevant phase functions have values that differ from the phase
average; as a consequence MEP leads to wrong predictions. This problem can be
solved by searching for the ‘overlooked’ constants of motion and then control-
ling for them, which yields the correct results.74 However, the fact remains that
our original probability assignment was wrong, and this was because we have
ignored certain important dynamical features of the system. Hence the correct
application of MEP depends, after all, on dynamical features of the system. More
specifically, the micro canonical distribution seems to be correct only if there are
no such invariant subsets, i.e. if the system is ergodic.

A final family of objections has to do with the epistemic interpretation of
probabilities itself (rather than with ‘technical’ problems in connection with
the application of the MEP formalism). First, the Gibbs entropy is defined in
terms of the distribution ρ, and if ρ pertains to our epistemic situation rather
than to (aspects of) the system, it, strictly speaking, does not make any sense
to say that entropy is a property of the system; rather, entropy is a property
of our knowledge of the system. Second, in the Gibbs approach equilibrium is
defined in terms of specific properties that the distribution ρ must possess at
equilibrium (see §3.3.1). Now the same problem arises: if ρ reflects our epistemic
situation rather than facts about the system, then it does not make sense to
say that the system is in equilibrium; if anything, it is our knowledge that is
in equilibrium. This carries over the non-equilibrium case. If ρ is interpreted
epistemically, then the approach to equilibrium also pertains to our knowledge
and not to the system. This has struck many commentators as outright wrong,
if not nonsensical. Surely, the boiling of kettles or the spreading of gases has
something to do with how the molecules constituting these systems behave and
not with what we happen (or fail) to know about them (Redhead 1995, pp. 27–
8; Albert 2000, p. 64; Goldstein 2001, p. 48; Loewer 2001, p. 611). Of course,

74Quay (1978, pp. 53–4) discusses this point in the context of ergodic theory.
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nothing is sacred, but further explanation is needed if such a radical conceptual
shift is to appear plausible.

Against the first point Jaynes argues that entropy is indeed epistemic even
in TD (1983, pp. 85–6) because here there is no such thing as the entropy of a
physical system. In fact, the entropy is relative to what variables one chooses to
describe the system; depending on how we describe the system, we obtain dif-
ferent entropy values. From this Ben-Menahem (2001, §3) draws the conclusion
that, Jaynes’ insistence on knowledge notwithstanding, one should say that en-
tropy is relative to descriptions rather than to knowledge, which would mitigate
considerably the force of the objection. This ties in with the fact (mentioned in
Sklar 1999, p. 195) that entropy is only defined by its function in the theory
(both in TD and in SM); we neither have a phenomenal access to it nor are
there measurement instruments to directly measure entropy. These points do, to
some extent, render an epistemic (or descriptive) understanding of entropy more
plausible, but whether they in anyway mitigate the implausibility that attaches
to an epistemic understanding of equilibrium and the approach to equilibrium
remains an open question.

3.3.7 Reductionism

How does the Gibbsian approach fare with reducing TD to SM? The aim of a
reduction is the same as in the Boltzmannian case: deduce a revised version of the
laws of TD from SM (see §3.2.8). The differences lie in the kind of revisions that
are made. I first discuss those approaches that proffer an ontic understanding of
probabilities and then briefly discuss how reduction could be construed.

Boltzmann took over from TD the notion that entropy and equilibrium are
properties of an individual system and sacrificed the idea that equilibrium (and
the associated entropy values) are stationary. Gibbs, on the contrary, retains the
stationarity of equilibrium, but at the price of making entropy and equilibrium
properties of an ensemble rather than an individual system. This is because both
equilibrium and entropy are defined in terms of the probability distribution ρ,
which is a distribution over an ensemble and not over an individual system.
Since a particular system can be a member of many different ensembles one
can no longer assert that an individual system is in equilibrium. This ‘ensemble
character’ carries over to other physical quantities, most notably temperature,
which are also properties of an ensemble and not of an individual system.

This is problematic because the state of an individual system can change
considerably as time evolves while the ensemble average does not change at all;
so we cannot infer from the behaviour of an ensemble to the behaviour of an
individual system. However, what we are dealing with in experimental contexts
are individual systems; and so the shift to ensembles has been deemed inadequate
by some. Maudlin (1995, p. 147) calls it a ‘Pyrrhic victory’ and Callender (1999)
argues that this and related problems disqualify the Gibbs approach as a serious
contender for a reduction of TD.

It is worth observing that Gibbs himself never claimed to have reduced TD
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to SM and only spoke about ‘thermodynamic analogies’ when discussing the
relation between TD and SM; see Uffink (2007, pp. 994–6) for a discussion.
The notion of analogy is weaker than that of reduction, but it is at least an
open question whether this is an advantage. If the analogy is based on purely
algebraic properties of certain variables then it is not clear what, if anything,
SM contributes to our understanding of thermal phenomena; if the analogy is
more than a merely formal one, then at least some of the problems that we have
been discussing in connection with reduction are bound to surface again.

3.4 Conclusion

Before drawing some general conclusions from the discussion in Sections 3.2 and
3.3, I would like to briefly mention some of the issues, which, for lack of space,
I could not discuss.

3.4.1 Sins of Omission

SM and the Direction of Time. The discussion of irreversibility so far has fo-
cused on the problem of the directionality of change in time. One can take this
one step further and claim that this directionality in fact constitutes the direc-
tion of time itself (the ‘arrow of time’). Attempts to underwrite the arrow of
time by an appeal to the asymmetries of thermodynamics and SM can be traced
back to Boltzmann, and have been taken up by many since. The literature on
the problem of the direction of time is immense and it is impossible to give a
comprehensive bibliography here; instead I mention just some approaches that
are closely related to SM. The modern locus classicus for a view that seeks to
ground the arrow of time on the flow of entropy is Reichenbach (1956). Earman
(1974) offers a sceptical take on this approach and provides a categorisation of
the different issues at stake. These are further discussed in Sklar (1981; 1993,
Chapter 10), Price (1996; 2002a; 2002b), Horwich (1987), Callender (1998), Al-
bert (2000, Chapter 6), Brown (2000), North (2002), Castagnino and Lombardi
(2005), Hagar (2005) and Frisch (2006).

The Gibbs paradox. Consider a container that is split in two halves by a barrier
in the middle. The left half is filled with gas G1, the right half with a different
gas G2; both gases have the same temperature. Now remove the shutter. As a
result both gases start to spread and get mixed. We then calculate the entropy of
the initial and the final state and find that the entropy of the mixture is greater
than the entropy of the gases in their initial compartments. This is the result
that we would expect. The paradox arises from the fact that the calculations do
not depend on the fact that the gases are different; that is, if we assume that we
have air of the same temperature on both sides of the barrier the calculations
still yield an increase in entropy when the barrier is removed. This seems wrong
since it would imply that the entropy of a gas depends on its history and cannot
be a function of its thermodynamic state alone (as thermodynamics requires).

What has gone wrong? The standard ‘textbook solution’ of this problem
is that classical SM gets the entropy wrong because it makes a mistake when
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counting states (see for instance Huang 1963, pp. 153–4; Greiner et al. 1993,
pp. 206–8). The alleged mistake is that we count states that differ only by a
permutation of two indistinguishable particles as distinct, while we should not
do this. Hence the culprit is a flawed notion of individuality, which is seen as
inherent to classical mechanics. The solution, so the argument goes, is provided
by quantum mechanics, which treats indistinguishable particles in the right way.

This argument raises a plethora of questions concerning the nature of in-
dividuality in classical and quantum mechanics, the way of counting states in
both the Boltzmann and the Gibbs approach, and the relation of SM to ther-
modynamics. These issues are discussed in Rosen (1964), Lande (1965), van
Kampen (1984), Denbigh and Denbigh (1985, Chapter 4), Denbigh and Redhead
(1989), Jaynes (1992), Redhead and Teller (1992), Mosini (1995), Costantini and
Garibaldi (1997, 1998), Huggett (1999), Gordon (2002) and Saunders (2006).

Maxwell’s Demon. Imagine the following scenario, originating in a letter of
Maxwell’s written in 1867. Take two gases of different temperature that are
separated from one another only by a wall. This wall contains a shutter, which is
operated by a demon who carefully observes all molecules. Whenever a particle
moves towards the shutter from the colder side and the particle’s velocity is
greater than the mean velocity of the particles in the hotter gas, then the demon
opens the shutter, and so lets the particle pass through. Similarly, when a particle
heads for the shutter from within the hotter gas and the particle’s velocity is
lower than the mean velocity of the particles of the colder gas, then the demon
lets the particle pass through the shutter. The net effect of this is that the hotter
gas becomes even hotter and the colder one even colder. So we have a heat
transfer from the cooler to the hotter gas, and this without doing any work; it
is only the skill and intelligence of the demon, who is able to sort molecules,
that brings about the heat transfer. But this sort of heat transfer is not allowed
according to the Second Law of thermodynamics. So the conclusion is that the
demon has produced a violation of the second law of thermodynamics.

In Maxwell’s own interpretation, this thought experiment shows that the
second law is not an exceptionless law; it rather describes a general tendency
for systems to behave in a certain way, or, as he also puts it, it shows that
the second law has only ‘statistical certainty’. Since Maxwell, the demon had
a colourful history. In particular, in the wake of Szilard’s work, much attention
has been paid to the entropy costs of processing and storing information. These
issues are discussed in Daub (1970), Klein (1970), Leff and Rex (1990; 2003),
Shenker (1997; 1999), Earman and Norton (1998; 1999), Albert (2000, Chapter
5), Bub (2001), Bennett (2003), Norton (2005), Maroney (2005) and Ladyman
et al. (2007).

Entropy. There are a number of related but not equivalent concepts denoted
by the umbrella term ‘entropy’: thermodynamic entropy, Shannon entropy, Boltz-
mann entropy (fine-grained and coarse-grained), Gibbs entropy (fine-grained and
coarse-grained), Kolmogorov-Sinai entropy, von Neumann entropy and fractal
entropy, to mention just the most important ones. It is not always clear how
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these relate to one another as well as to other important concepts such as algo-
rithmic complexity and informational content. Depending on how these relations
are construed and on how the probabilities occurring in most definitions of en-
tropy are interpreted, different pictures emerge. Discussions of these issues can
be found in Grad (1961), Jaynes (1983), Wehrl (1978), Denbigh and Denbigh
(1985), Denbigh (1989b), Barrett and Sober (1992; 1994; 1995), Smith et al.
(1992), Denbigh (1994), Frigg (2004), Balian (2005), and with a particular focus
on entropy in quantum mechanics in Shenker (1999), Henderson (2003), Timp-
son (2003), Campisi (2005, 2008), Sorkin (2005) and Hemmo and Shenker (2006).
The relation between entropy and counterfactuals is discussed in Elga (2001) and
Kutach (2002).

Quantum Mechanics and Irreversibility. This review was concerned with the
problem of somehow ‘extracting’ time-asymmetric macro laws from
time-symmetric classical micro laws. How does this project change if we focus
on quantum rather than classical mechanics? Prima facie we are faced with the
same problems because the Schrödinger equation is time reversal invariant (if
we allow replacing the wave function by its complex conjugate when evolving it
backwards in time). However, in response to the many conceptual problems of
quantum mechanics new interpretations of quantum mechanics or even alterna-
tive quantum theories have been suggested, some of which are not time reversal
invariant. Dynamical reduction theories (such as GRW theory) build state col-
lapses into the fundamental equation, which thereby becomes non time-reversal
invariant. Albert (1994a; 1994b; 2000, Chapter 7) has suggested that this time
asymmetry can be exploited to underwrite thermodynamic irreversibility; this
approach is discussed in Uffink (2002). Another approach has been suggested by
Hemmo and Shenker who, in a series of papers, develop the idea that we can
explain the approach to equilibrium by environmental decoherence (2001; 2003;
2005).

Phase Transitions. Most substances, for instance water, can exist in different
phases (liquid, solid, gas). Under suitable conditions, so-called phase transitions
can occur, meaning that the substance changes from, say, the liquid to the solid
phase. How can the phenomenon of phase transitions be understood from a
microscopic point of view? This question is discussed in Sewell (1986, Chapters
5-7), Lebowitz (1999), Liu (2001) and Emch and Liu (2002, Chapters 11-14).

SM methods outside physics. Can the methods of SM be used to deal with
problems outside physics? In some cases it seems that this is the case. Constantini
and Garibaldi (2004) present a generalised version of the Ehrenfest flea model
and show that it can be used to describe a wide class of stochastic processes,
including problems in population genetics and macroeconomics. The methods of
SM have also been applied to markets, a discipline now known as ‘econophysics’;
see Voit (2005) and Rickles (2008).
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3.4.2 Summing Up
The foremost problem of the foundation of SM is the lack of a generally ac-
cepted and universally used formalism, which leads to a kind of schizophrenia in
the field. The Gibbs formalism has a wider range of application and is mathemat-
ically superior to the Boltzmannian approach and is therefore the practitioner’s
workhorse. In fact, virtually all practical applications of SM are based on the
Gibbsian machinery. The weight of successful applications notwithstanding, a
consensus has emerged over the last decade and a half that the Gibbs formalism
cannot explain why SM works and that when it comes to foundational issues
the Boltzmannian approach is the only viable option (see Lavis (2005) and ref-
erences therein). Hence, whenever the question arises of why SM is so successful,
an explanation is given in Boltzmannian terms.

This is problematic for at least two reasons. First, at least in its current
form, the Boltzmann formalism has a very limited range of applicability. The
Boltzmann formalism only applies to non (or very weakly) interacting particles
and at the same time it is generally accepted that the Past Hypothesis, an
assumption about the universe as a whole, is needed to make it work. But the
universe as a whole is not a collection of weakly interacting systems, not even
approximately.

Second, even if the internal problems of the Boltzmann approach can be
solved, we are left with the fact that what delivers the goodies in ‘normal science’
is the Gibbs rather than the Boltzmann approach. This would not be particularly
worrisome if the two formalisms were intertranslatable or equivalent in some
other sense (like, for instance, the Schrödinger and the Heisenberg picture in
quantum mechanics). However, as we have seen above, this is not the case. The
two frameworks disagree fundamentally over what the object of study is, the
definition of equilibrium, and the nature of entropy. So even if all the internal
difficulties of either of these approaches were to find a satisfactory solution, we
would still be left with the question of how the two relate.

A suggestion of how these two frameworks could be reconciled has recently
been presented by Lavis (2005). His approach involves the radical suggestion to
give up the notion of equilibrium, which is binary in that systems either are or not
in equilibrium, and to replace it by the continuous property of ‘commonmess’.
Whether this move is justified and whether it solves the problem is a question
that needs to be discussed in the future.

Appendix
A. Classical Mechanics
CM can be presented in various more or less but not entirely equivalent formula-
tions: Newtonian mechanics, Lagrangian mechanics, Hamiltonian mechanics and
Hamilton-Jacobi theory; for comprehensive presentations of these see Arnold
(1978), Goldstein (1980), Abraham and Marsden (1980) and José and Saletan
(1998). Hamiltonian Mechanics (HM) is best suited to the purposes of SM; hence
this appendix focuses entirely on HM.
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CM describes the world as consisting of point-particles, which are located at
a particular point in space and have a particular momentum. A system’s state
is fully determined by a specification of each particle’s position and momentum.
Conjoining the space and momentum dimension of all particles of a system in
one vector space yields the so-called phase space Γ of the system. The phase
space of a system with m degrees of freedom is 2m dimensional; for instance, the
phase space of a system consisting of n particles in three-dimensional space has
6n dimensions. Hence, the state of a mechanical system is given by the 2m-tuple
x := (q, p) := (q1 , . . . , qm , p1 , . . . , pm) ∈ Γ. The phase space Γ is endowed with
a Lebesgue measure µ

L
, which, in the context of SM, is also referred to as the

‘standard measure’ or the ‘natural measure’.
The time evolution of the system is governed by Hamilton’s equation of mo-

tion:75

q̇
i

=
∂H

∂p
i

and ṗ
i

= −∂H
∂q

i

, i = 1, . . . ,m, (3.43)

where H(q, p, t) is the so-called ‘Hamiltonian’ of the system. Under most circum-
stances the Hamiltonian is the energy of the system (this is not true in systems
with time dependent boundary conditions, but these do not play a rôle in the
present discussion).

If the Hamiltonian satisfies certain conditions (see Arnold (2006) for a dis-
cussion of these) CM is deterministic in the sense that the state x0 of the system
at some particular instant of time t0 (the so-called ‘initial condition’) uniquely
determines the state of the system at any other time t. Hence, each point in Γ
lies on exactly one trajectory (i.e. no two trajectories in phase space can ever
cross) and H(q, p, t) defines a one parameter group of transformations φt, usually
referred to as ‘phase flow’, mapping the phase space onto itself: x → φt(x) for
all x ∈ Γ and all t.

A quantity f of the system is a function of the coordinates and (possibly)
time: f(q, p, t). The time evolution of f is given by

ḟ = {f,H}+
∂f

∂t
, (3.44)

where { , } is the so-called Poisson bracket:

{g, h} :=
∑
i

[
∂g

∂qi

∂h

∂pi
− ∂h

∂qi

∂g

∂pi

]
, (3.45)

for any two differentiable functions g and h on Γ.
From this it follows that H is a conserved quantity iff it does not explicitly

depend on time. In this case we say that the motion is stationary, meaning that
the phase flow depends only on the time interval between the beginning of the

75The dot stands for the total time derivative: ḟ := df/dt.
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motion and ‘now’ but not on the choice of the initial time. If H is a conserved
quantity, the motion is confined to a 2m − 1 dimensional hypersurface ΓE , the
so-called ‘energy hypersurface’, defined by the condition H(q, p) = E, where E
is the value of the total energy of the system.

Hamiltonian dynamics has three distinctive features, which we will now dis-
cuss.

Liouville’s theorem asserts that the Lebesgue measure (in this context also
referred to as ‘phase volume’) is invariant under the Hamiltonian flow:

For any Lebesgue measurable region R ⊆ Γ and for any time t: R and the image of
R under the Hamiltonian flow, φt(R), have the same Lebesgue measure; i.e. µL(R) =
µL(φt(R)).

In geometrical terms, a region R can (and usually will) change its shape but not
its volume under the Hamiltonian time evolution.

This also holds true if we restrict the motion of the system to the energy
hypersurface ΓE , provided we choose the ‘right’ measure on ΓE . We obtain this
measure, µ

L,E
, by restricting µ

L
to ΓE so that the 6n− 1 dimensional hypervol-

ume of regions in ΓE is conserved under the dynamics. This can be achieved by
dividing the surface element dσ

E
on ΓE by the gradient of H (Kac 1959, 63):

µ
L,E

(RE) :=
∫
RE

dσ
E

‖gradH‖ (3.46)

for any RE ⊆ ΓE , where

‖gradH‖ :=

[
n∑
k=1

( ∂H
∂pk

)2

+
(∂H
∂qk

)2
]1/2

. (3.47)

We then have µ
L,E

(RE) = µ
L,E

(φt(RE)) for all RE ⊆ ΓE and for all t.
Poincaré’s recurrence theorem: Roughly speaking, Poincaré’s recurrence the-

orem says that any system that has finite energy and is confined to a finite region
of space must, at some point, return arbitrarily close to its initial state, and does
so infinitely many times. The time that it takes the system to return close to its
initial condition is called ‘Poincaré recurrence time’. Using the abstract defini-
tion of a dynamical system introduced in §3.2.4.1, the theorem can be stated as
follows:

Consider an area-preserving mapping of the phase space X of a system onto itself,
φt(X) = X, and suppose that its measure is finite, µ(X) <∞. Then, for any measurable
subset A with µL(A) > 0 of X, almost every point x in A returns to A infinitely often;
that is, for all finite times τ the set B := {x|x ∈ A and for all times t ≥ τ : φtx /∈ A}
has measure zero.

The Hamiltonian systems that are of interest in SM satisfy the requirements of
the theorem if we associate X with the accessible region of the energy hypersur-
face.
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Time reversal invariance. Consider, say, a ball moving from left to right and
record this process on videotape. Intuitively, time reversal amounts to playing
the tape backwards, which makes us see a ball moving from right to left. Two
ingredients are needed to render this idea precise, a transformation reversing the
direction of time, t→ −t, and the reversal of a system’s instantaneous state. In
some contexts it is not obvious what the instantaneous state of a system is and
what should be regarded as its reverse.76 In the case of HM, however, the ball ex-
ample provides a lead. The instantaneous state of a system is given by (q, p), and
in the instant in which the time is reversed the ball suddenly ‘turns around’ and
moves from right to left. This suggests the sought-after reversal of the instanta-
neous state amounts to changing the sign of the momentum: R(q, p) := (q,−p),
where R is the reversal operator acting on instantaneous states.

Now consider a system in the initial state (q
i
, p

i
) at time t

i
that evolves,

under the system’s dynamics, into the final state (q
f
, p

f
) at some later time

t
f
. The entire process (‘history’) is a parametrised curve containing all inter-

mediates states: h := {(q(t), p(t))|t ∈ [ti , tf ]}, where (q(ti), p(ti)) = (qi , pi) and
(q(t

f
), p(t

f
)) = (q

f
, p

f
). We can now define the time-reversed process of h as

follows: Th := {R(q(−t), p(−t))|t ∈ [−t
f
,−t

i
]}, where T is the time-reversal

operator acting on histories. Introducing the variable τ := −t and applying R
we have Th = {(q(τ),−p(τ))| τ ∈ [t

i
, t
f
]}. Hence, Th is a process in which the

system evolves from state R(q
f
, p

f
) to state R(qi , pi) when τ ranges over [ti , tf ].

Call the class of processes h that are allowed by a theory A; in the case of HM
A contains all trajectories that are solutions of Hamilton’s equation of motion.
A theory is time reversal invariant (TRI) iff for every h: if h ∈ A then Th ∈ A
(that is, if A is closed under time reversal). Coming back to the analogy with
videotapes, a theory is TRI iff a censor who has to ban films containing scenes
which violate the law of the theory issues a verdict which is the same for either
direction of playing the film (Uffink 2001, p. 314). This, however, does not imply
that the processes allowed by a TRI theory are all palindromic in the sense that
the processes themselves look the same when played backwards; this can but
need not be the case.

HM is TRI in this sense. This can be seen by time-reversing the Hamilto-
nian equations: carry out the transformations t → τ and (q, p) → R(q, p) and
after some elementary algebraic manipulations you find dqi/dτ = ∂H/∂pi and
dpi/dτ = −∂H/∂pi, i = 1, ...,m. Hence the equations have the same form in
either direction of time, and therefore what is allowed in one direction of time is
also allowed in the other.77

76A recent controversy revolves around this issue. Albert (2000, Chapter 1) claims that,
common physics textbook wisdom notwithstanding, neither electrodynamics, nor quantum
mechanics nor general relativity nor any other fundamental theory turns out to be time reversal
invariant once the instantaneous states and their reversals are defined correctly. This point of
view has been challenged by Earman (2002), Uffink (2002) and Malament (2004), who defend
common wisdom; for a further discussion see Leeds (2006).

77There was some controversy over the question of whether classical mechanics really is TRI;
see Hutchison (1993, 1995a, 1995b), Savitt (1994) and Callender (1995). However, the moot
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The upshot of this is that if a theory is TRI then the following holds: if a
transition from state (q

i
, p

i
) to state (q

f
, p

f
) in time span ∆ := t

f
− t

i
is allowed

by the lights of the theory, then the transition from state R(q
f
, p

f
) to state

R(qi , pi) in time span ∆ is allowed as well, and vice versa. This is the crucial
ingredient of Loschmitd’s reversibility objection (see §3.2.3.3).

B. Thermodynamics
Thermodynamics is a theory about macroscopic quantities such as pressure,
volume and temperature and it is formulated solely in terms of these; no reference
to unobservable microscopic entities is made. At its heart lie two laws, the First
Law and Second Law of TD. Classical presentations of TD include Fermi (1936),
Callen (1960), Giles (1964) and Pippard (1966).

The first law of thermodynamics. The first law says that there are two ways
of exchanging energy with a system, putting heat into it and doing work on it,
and that energy is a conserved quantity:

∆U = ∆Q+ ∆W, (3.48)

where ∆U is the energy put into the system, and ∆Q and ∆W are, respectively,
the heat and work that went into the system. Hence, put simply, the first law,
says that one cannot create energy and thereby rules out the possibility of a
perpetual motion machine.

The second law of thermodynamics. The First Law does not constrain the
ways in which one form of energy can be transformed into another one and how
energy can be exchanged between systems or parts of a system. For instance,
according to the first law it is in principle possible to transform heat into work
or work into heat according to one’s will, provided the total amount of heat is
equivalent to the total amount of work. However, it turns out that although one
can always transform work into heat, there are severe limitations on the ways in
which heat can be transformed into work. These limitations are specified by the
Second Law.

Following the presentation in Fermi (1936, pp. 48–55), the main tenets of
the Second Law can be summarised as follows. Let A and B be two equilibrium
states of the system. Then consider a quasi-static transformation (i.e. one that
is infinitely gentle in the sense that it proceeds only through equilibrium states),
which takes the system from A to B . Now consider the integral∫ B

A

dQ

T
, (3.49)

where T is the temperature of the system and dQ is the amount of heat quasi-
statically absorbed by the system. One can then prove that the value of this

point in this debate was the status of frictional forces, which, unlike in Newtonian Mechanics,
are not allowed in HM. So this debate has no implications for the question of whether HM is
TRI.
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integral does not depend on the sequence by which one gets from A to B; it only
depends on A and B themselves.

Now choose an arbitrary equilibrium state E of the system and call it the
standard state. Then we can define the entropy of the state A as

S(A) =
∫ A

E

dQ

T
, (3.50)

where the integral is taken over a quasi-static transformation.
With this at hand we can formulate the Second Law of thermodynamics:∫ B

A

dQ

T
≤ S(B)− S(A). (3.51)

For a totally isolated system we have dQ = 0. In this case the Second Law
takes the particularly intuitive form:

S(A) ≤ S(B). (3.52)

That is, for any transformation in an isolated system, the entropy of the final
state can never be less than that of the initial state. The equality sign holds if,
and only if, the transformation is quasi-static.

Thermodynamics is not free of foundational problems. The status of the Sec-
ond Law is discussed in Popper (1957), Lieb and Yngvason (1999) and Uffink
(2001); Cooper (1967), Boyling (1972), Moulines (1975; 2000), Day (1977) and
Garrido (1986) examine the formalism of TD and possible axiomatisations. The
nature of time in TD is considered in Denbigh (1953) and Brown and Uffink
(2001); Rosen (1959), Roberts and Luce (1968) and Liu (1994) discuss the com-
patibility of TD and relativity theory. Wickens (1981) addresses the issue of
causation in TD.
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in F. Hasenöhrl ed, Wissenschaftliche Abhandlungen. Leipzig: J. A. Barth
1909, Vol. 2, pp. 164–223.

Boyling, J. B. (1972). An axiomatic approach to classical thermodynamics, Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences 329, 35–70.

Bricmont, J. (1996). Science of chaos or chaos in science? In P. R. Gross, N.
Levitt, and M. W. Lewis eds, The Flight from Science and Reason. Annals
of the New York Academy of Sciences, Vol. 775, New York: The New York
Academy of Sciences, pp. 131–75.

————– (2001). Bayes, Boltzmann, and Bohm: Probabilities in physics, in
Bricmont et al. (2001), pp. 4–21.
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