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Chance in Boltzmannian Statistical
Mechanics

Roman Frigg†‡

In two recent papers Barry Loewer (2001, 2004) has suggested to interpret probabilities
in statistical mechanics as chances in David Lewis’s (1994) sense. I first give a precise
formulation of this proposal, then raise two fundamental objections, and finally con-
clude that these can be overcome only at the price of interpreting these probabilities
epistemically.

1. Introduction. Consider a gas that is adiabatically isolated from its en-
vironment and confined to the left half of a container. Then remove the
wall separating the two parts. The gas will immediately start spreading
and soon be evenly distributed over the entire available space. The gas
has approached equilibrium. Thermodynamics (TD) characterizes this
process in terms of an increase of thermodynamic entropy, which attains
its maximum value at equilibrium. The second law of thermodynamics
captures the irreversibility of this process by positing that in an isolated
system such as the gas entropy cannot decrease. The aim of statistical
mechanics (SM) is to explain the behavior of the gas and, in particular,
its conformity with the second law in terms of the dynamical laws gov-
erning the individual molecules of which the gas is made up. In what
follows these laws are assumed to be the ones of Hamiltonian classical
mechanics.

We should not, however, ask for an explanation of the second law
literally construed. This law is a universal law and as such cannot be
explained by a statistical theory. But this is not a problem because we
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can rest content if we explain the ‘Boltzmannian version’ of the second
law (Callender 1999), which I call ‘Boltzmann’s Law’ (BL):

Consider an arbitrary instant of time and assume that at that timet
the Boltzmann entropy of the system is low. It is then highlyS (t)B

probable that at any time we have .′ ′t 1 t S (t ) 1 S (t)B B

What notion of probability is invoked in BL and what reasons do we
have to believe that the claim it makes is true? The orthodox answer is
that probabilities are time averages and that entropy is likely to increase
because, assuming that the system is ergodic, the system is in equilibrium
most of the time. This view is now widely believed to be untenable due
to both conceptual problems and its invocation of ergodicity (see Earman
and Rédei 1996 and van Lith 2001 for discussions). A propensity inter-
pretation of SM probabilities is ruled out by the fact that the underlying
microtheory, Hamiltonian mechanics, is deterministic, which is incom-
patible with there being propensities (Clark 2001). Frequentism, as von
Mises himself pointed out, is problematic as an interpretation of SM
probabilities because a sequence of results that is produced by the same
system does not satisfy the independence requirements of a collective (van
Lith 2001, 587). Finally, so-called no-theory theories do not improve the
situation because at least in the context of physical theories they do not
provide an independent alternative to other accounts (Frigg and Hoefer
2007).

In two recent papers Loewer (2001, 2004) has suggested that the way
out of this deadlock is to build on David Lewis’s (1986, 1994) approach
and interpret SM probabilities as chances in Lewis’s sense. In this essay
I first give a precise formulation of Loewer’s proposal, then raise two
fundamental objections, and finally conclude that these can be overcome
only at the price of interpreting SM probabilities epistemically.

2. Boltzmannian Statistical Mechanics. The microstate of a system con-
sisting of particles is specified by a point in its 6n-dimensional phasen
space , which is endowed with the Lebesgue measure (its ‘natural’G mL

measure).1 The dynamics of the system is governed by Hamilton’s equa-
tions of motion, which define a measure-preserving phase flow on ;f Gt

that is, : is a one-to-one mapping for every real number t andf G r Gt

for every measurable set . In what follows wem (f (B)) p m (B) B P GL t L

assume that the relevant physical process begins at a particular instant
, and I adopt the convention that ‘ ’ denotes the state of the systemt f (x)0 t

at time if it was in state x at , and likewise for ‘ ’. Similarly,t � t t f (B)0 0 t

1. For a short introduction to Boltzmannian SM, see Lebowitz 1993.
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‘ ’ denotes the state at time that gets mapped onto x at timef (x) t�t 0

under the dynamics of the system, and likewise for . In at � t f (B)0 �t

Hamiltonian system energy is conserved and hence the motion of the
system is confined to the dimensional energy hypersurface . The6n � 1 GE

measure can be restricted to , which induces a natural and invariantm GL E

measure on (Kac 1959,63).m GE

The macrostates , , of the system (where ), char-M k p 1, . . . , m m ! �k

acterized by the values of macroscopic parameters, are assumed to su-
pervene on the system’s microstates. Therefore, each is associated withMk

a region so that the system is in macrostate at if and onlyG P G M tM E kk

if its microstate x at t lies within . The form a partition of ,G G GM M Ek k

meaning that they do not overlap and jointly cover .GE

By definition, is the Boltzmann entropy ofS (M ) :p k log [m(G )]B k B Mk

macrostate (where is the Boltzmann constant). Because the doM k Gk B Mk

not overlap, it follows that a system is in exactly one macrostate at any
given time t, and for this reason it makes sense to talk about the Boltz-
mann entropy of a system at time t: , whereS (t) S (t) :p k log [m(G )]B B B Mt

is the system’s macrostate at time t (i.e., is the for which it isM M Mt t k

the case that , where x is the system’s microstate at t). The Boltz-x � GMk

mann entropy assumes its maximum for the equilibrium state.
To rationalize Boltzmann’s law we need to introduce probabilities. The

standard way to do this is by appeal to the so-called Statistical Postulate
(SP):

Let be the system’s macrostate at time t. Then the probability atMt

time t that the system’s microstate lies in isB P G p (B) pM tt

.m(B)/m(G )Mt

Now consider the set F of all microstates in , which in the near futureGMt

evolve toward macrostates , which have higher Boltzmann entropy than′M
. With the assumption that for all k except for theM m(F )/m(G ) ≈ 1t Mk

equilibrium state, it follows from SP that for all t the system is highly
likely to evolve toward a state of higher entropy, which is exactly what
BL asserts.

Whether or not this assumption holds true in a particular system is a
substantial question. However, even if it does, there is a problem. It follows
from the time reversal invariance of Hamilton’s equations of motion that
if it is true that the system is overwhelmingly likely to evolve toward a
macrostate of higher entropy in the future, it is also overwhelmingly likely
to have evolved into the current macrostate from a past macrostate ′′M
that also has higher entropy. This flies in the face everyday experience
and leads to wrong retrodictions.

Albert (2000, 71–96) suggests fixing this problem by first taking the
system under investigation to be the entire universe and then adopting
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the so-called Past Hypothesis (PH), the postulate that the universe came
into being in a low entropy macrostate, the Past State, which is provided
to us by modern Big Bang cosmology. The problems with flawed retrodic-
tions can then be avoided by conditionalizing on the Past State. From a
technical point of view, this amounts to replacing SP with what I call the
‘Past Hypothesis Statistical Postulate’ (PHSP):

Let be the system’s macrostate at time t. SP is valid for the PastMt

State , which obtains at time . For all times the probabilityM t t 1 tp 0 0

at time t that the system’s microstate lies in B is p (BFR ) p m(B ∩t t

, where .R )/m(R ) R :p M ∩ f (M )t t t t t p

In what follows I refer to these probabilities as ‘PHSP probabilities’.
This principle is used to make predictions about the system’s future by
choosing B to be the set of those microstates that behave in the desired
way. For instance, if we choose B to be the set F (as defined above),

is the probability that the system’s entropy will increase in the nearp (F )t

future given PH. If this probability comes out high for all again,Mk

except for the equilibrium state, we have explained BL. Again, whether
or not this is the case is a substantive question having to do with both
the construction of the macrostates as well as the dynamics of the system.
However, the problems I discuss in this essay are orthogonal to this issue,
and so I assume for the sake of argument that this assumption bears out
in systems of interest.2

3. L-Chances. The basis for Lewis’s theory of probability is the so-called
Humean mosaic, the collection of all nonmodal and nonprobabilistic ac-
tual events making up the world’s entire history (from the very beginning
to the very end) and upon which all other facts supervene. Lewis himself
suggested that the mosaic consists of space-time points plus local field
quantities representing material stuff. In a classical mechanical system the
Humean mosaic simply consists of the trajectory of the system’s microstate
in phase space, on which the system’s macrostates supervene.

The next element of Lewis’s theory is a thought experiment. To make
this explicit—more explicit than it is in Lewis’s own presentation—I in-
troduce a fictitious creature, Lewis’s Demon. In contrast to human beings
who can only know a small part of the Humean mosaic, Lewis’s demon
knows the entire mosaic. The demon now formulates various deductive
systems that make true assertions about what is the case and, perhaps,
also about what the probability for certain events are. Then the demon
is asked to choose the best among these systems. The laws of nature are

2. I also assume that one can make sense of PH in the current context, an assumption
that has been questioned by Earman (2006).
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the true theorems of this system, and the chances for certain events to
occur are what the probabilistic laws of the best system say they are (Lewis
1994, 480). Following Loewer, I call probabilities thus defined L-chances.

The best system is the one that strikes the best balance between strength,
simplicity, and fit. The notions of strength and simplicity are given to the
demon and are taken for granted in this context, but the notion of fit
needs explicit definition. Every system assigns probabilities to certain
courses of history, among them the actual course; the fit of the system is
measured by the probability that it assigns to the actual course of history,
that is, by how likely it regards things that actually happen. By definition
systems that do not involve probabilistic laws have perfect fit. As an
illustration, consider a Humean mosaic that consists of just 10 outcomes
of a coin flip: HHTHTTHHTT. Theory posits that all events are in-T1

dependent and sets ; theory shares the independencep(H ) p p(T ) p 0.5 T2

assumption but posits and . It follows that hasp(H ) p 0.9 p(T ) p 0.1 T1

better fit than because .10 5 5T (0.5) 1 (0.1) (0.9)2

Loewer’s suggestion is that Boltzmannian SM as introduced above—
the package of Hamiltonian mechanics, PH and PHSP—is a putative best
system of the sort just described (2001, 618; 2004, 1124) and that PHSP
probabilities can therefore be regarded as L-chances. But there is an ob-
vious problem, namely, reconciling determinism and the existence of prob-
abilistic laws, which Lewis himself thought was impossible (1986, 118).

Loewer claims that Lewis was wrong about this and suggests that in-
troducing probabilities via initial conditions solves the problem:

while there are chances different from 0 and 1 for possible initial
conditions the chances of any event A after the initial time will be
either 1 or 0 since A’s occurrence or non-occurrence will be entailed
by the initial state and the deterministic laws. However, we can define
a kind of dynamical chance which I call ‘macroscopic chance’. The
macroscopic chance at t of event A is the probability given by starting
with the micro-canonical distribution over the initial conditions and
then conditionalising on the entire macroscopic history of the world
(including the low entropy postulate) up until t. . . . This probability
distribution is completely compatible with deterministic laws since it
concerns only the initial conditions of the universe. (Loewer 2001,
618–619)3

Loewer does not tell us what exactly he means by “a kind of dynamical
chance,” in what sense this chance is macroscopic, how its values are
calculated, and how it connects to the technical apparatus of SM. I will

3. The same idea is described in Loewer 2004, 1124.
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now present how I think this proposal is best understood and show that,
on this reading, Loewer’s “macroscopic chances” coincide with PHSP as
formulated above.

As in Section 2, I take the system’s state at to be the macrostatet 1 t0

. We now need to determine the probability of the event ‘being in setMt

at time t’. As I understand it, Loewer’s proposal falls into twoB P GMt

parts. The first is that the probability of an event at a time t is ‘completely
determined’ by the probability of the corresponding event at time ; thatt0

is, the probability of the event ‘being in set B at time t’, , is equal top (B)t

the probability of ‘being in set at time ’ where is, by definition,B t B0 0 0

the set that evolves into B under the dynamics of the system after time
t has elapsed. Formally, , where is thep (B) p m (B ) p m (f (B)) mt 0 0 0 �t 0

microcanonical distribution over the Past State, that is, m ( 7 ) p0

.m( 7 ∩G )/m(G )M Mp p

The second part is conditionalizing on the entire macrohistory up to
time t, that is,a specification of the system’s macrostate at each instant
of time between and t. A possible macrohistory, for instance, is thatt0

system is in macrostate during the interval , in duringM [t , t ] M1 0 1 5

, in during , and so forth, where are the(t , t ] M (t , t ] t , t , t , . . .1 2 7 2 3 1 2 3

instants of time at which the system changes from one macrostate into
another. What we are now expected to calculate is the probability of
‘being in set B at time t’ given the system’s macrohistory. Let be theQt

set of all microstates in that are compatible with the entire past historyGMt

of the system; that is, it is the set of all that lie on trajectoriesx � GMt

that for every t were in the corresponding to the actual macrostateGMk

of the system at t. The sought after conditional probability then is
, provided that , which, as we shallp (BFQ ) p p (B&Q )/p (Q ) p (Q ) ( 0t t t t t t t t

see, is the problematic condition.
Putting these two parts together we obtain the fundamental equation

defining L-chances for deterministic systems:

m (f (B ∩ Q ))0 �t tp (BFQ ) p , (1)t t
m (f (Q ))0 �t t

where, again, .m ( 7 ) p m( 7 ∩ G )/m(G )0 M Mp p

The crucial thing to realize now is that, due to the conservation of the
measure, the expression for the conditional probability in PHSP can be
expressed as . Trivially, we can substi-p (BFR ) p m(f (B ∩ R ))/m(f (R ))t t �t t �t t

tute for in this expression, which makes it equivalent to Equationm m0

(1) if we treat and as equals. (In fact, there is a difference betweenQ Rt t

them in that only involves a conditionalization on PH, while containsR Qt t

the entire past history. However, nothing in PHSP depends on this, and
one could just as well include the entire history in .) Hence, PHSP canRt
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be interpreted as attributing probabilities to events at solely on thet 1 t0

basis of the microcanonical measure over the initial conditions, which is
precisely what Loewer needs.

4. Problems with Fit. Loewer claims that SM as introduced above is the
system that strikes the best balance between simplicity, strength, and fit.
Trivially, this implies that it can be ranked along these three dimensions.
Simplicity and strength are no more problematic in SM than they are in
any other context, and I shall therefore not discuss them further here.
The problematic concept is fit.

The fit of a theory is measured in terms of the probability that it assigns
to the actual course of history. But what history? Given that L-chances
are calculated using the Lebesgue measure, which assigns measure zero
to any trajectory, they do not lead to a nontrivial ranking of microhistories
(trajectories in ). The right choice seems to be to judge the fit of theoryG

with respect to the system’s macrohistory.
What is the probability of a macrohistory? A first answer to this ques-

tion would be to simply use Equation (1) to calculate the probability of
a macrostate at each instant of time and then multiply them all, just as
we did in the above example with the coins (with the only difference that
the probabilities are now not independent any more, which is accounted
for in Equation [1]). This is plain nonsense. There is an uncountable
infinity of such probabilities and multiplying an uncountable infinity of
numbers is an ill-defined operation. Determining the probability of a
history by multiplying probabilities for individual events in the history
works fine as long as the events are discrete (like coin flips), but it fails
when we have a continuum.

Maybe this was too crude a stab at the problem, and when taking the
right sorts of limits things work out fine. Let us discretize time by dividing
the real axis into small intervals of length , then calculating the proba-d

bilities at the instants , , , and so forth, multiply them (theret t � d t � 2d0 0 0

are only countably many now), and then take the limit . This wouldd r 0
work if the depended in a way on that would assure that thep (BFQ ) dt t

limit exists. This is not the case. In fact, for all (i.e., after the firstt 1 t1

change of macrostate), the do not exist because has measurep (BFQ ) Qt t t

zero, and this irrespective of . This can be seen as follows. Take the aboved

example of a macrohistory and consider an instant when thet � (t , t ]1 2

system is in macrostate . To calculate the probability of the systemM5

being in at t we need to determine , the set of all microstates inM Q5 t

compatible with the past macrohistory. Now, these points must beGM5

such that they were in at and in just an instant later (i.e., forM t M1 1 5

any , at the system’s state is in ). The mechanical systems� 1 0 t � � G1 M5

we are considering have global solutions (or at least solutions for the
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entire interval , where is the time when the system ceases to exist),[t , t ] t0 f f

and trajectories in such systems have finite phase velocity; that is, a phase
point x in cannot cross a finite distance in no time. From this it followsG

that the only points that satisfy the condition of being in at and inM t1 1

just instant later are the ones that at lie exactly on the boundaryM t5 1

between and . But the boundary of a dimensional region isM M 6n � 11 5

dimensional and therefore has measure zero. Therefore has6n � 2 Qt

measure zero for all , and accordingly does not exist fort 1 t p (BFQ )1 t t

, no matter what B is. Needless to say, this renders the limitt 1 t d r 01

obsolete.
The source of the problem is the conjunction of three elements: (1) the

posit that time is continuous, (2) the assumption that the transition from
one macrostate to another one takes place at a precise instant, (3) the
posit that we conditionalize on the entire macrohistory of the system. We
have to give up at least one of these to obtain nonzero . Thep (BFQ )t t

problem is that all three elements either seem reasonable or are deeply
entrenched in the theory and cannot be renounced without far-reaching
consequences.

The first option, discretizing time, would solve the problem because, if
we assume that time is discrete, the macrohistory is discrete too. If we
only consider, say, the events ‘being in at instant ’ and ‘being inG tM 11

at instant ’, where and , sets of finite measureG t t � [t , t ] t � (t , t ]M 2 1 0 1 2 1 25

can move from to , and no longer needs to have measure zero.G G QM M t1 5

The problem with this suggestion is that it is ad hoc and defeats the
purpose of SM. If we believe that classical mechanics is the fundamental
theory governing the microconstituents of the universe and set out to
explain the behavior of the universe in terms of its laws, not much seems
to be gained if such an explanation can only be had at the expense of
profoundly modifying these laws.

The second suggestion would be to allow for finite transition times
between macrostates, that is, allowing for there to be periods during which
it is indeterminate in which macrostate the system is. This suggestion is
not without merit, as one could argue that sharp boundaries between
macrostates are indeed a mathematical idealization that is ultimately
unjustifiable from a physics perspective. However, sharp transitions are
a direct consequence of the postulate that macrostates supervene on
microstates. This postulate is central to the Boltzmannian approach, and
it is not clear how it could be given up without unsettling the entire edifice
of Boltzmannian SM.

The third option denies that we should conditionalize on the complete
macrohistory. The idea is that even though time at bottom is continuous,
the macrohistory takes record of the system’s macrostate only at discrete
instants and is oblivious about what happens between these. That is, what
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we should conditionalize on is the discrete macrohistory (DMH): atMp

, at , at at , and at , wheret M t M t . . . , M t M t t p: t ≤0 t 1 t 2 t j�1 t j 0 01 2 j�1 j

is a finite number of instants of time and thet ≤ . . . ≤ t ≤ t :p t1 j�1 j f

the system’s macrostate at time .4 This solves the problem because,M tt ii

when conditionalizing on a discrete macrohistory, no longer necessarilyQt

is of measure zero.
This is at once the most feasible and the most problematic suggestion.

It is feasible because it does not require revisions in the structure of the
theory. It is problematic because we have given up the notion that the fit
of a theory has to be best with respect to the complete history of the
world and replaced it with the weaker requirement that fit be best for a
partial history. (And mind you, the point is not that the fit of the full
history is in practice too complicated to calculate and we therefore settle
for a more tractable notion; the point is that the fit of a complete ma-
crohistory is simply not defined because the relevant conditional proba-
bilities do not exist.) From the point of view of Lewis’s theory this seems
unmotivated. Fit, like truth, is a semantic concept characterizing the re-
lation between the theory and the world, and if the Humean mosaic has
continuous events in it, there should be a matter of fact about what the
fit of the theory is.

Moreover, even if one was willing to believe that a discrete version of
fit was satisfactory, it is not clear whether this leads to useful results.
Depending on which particular instants of time one chooses to measure
fit, one can get widely different results. Conditionalizing on a DMH would
be useful only if it was the case that the fit rankings came out the same
no matter what choice of instants we make. There is at least a question
whether this is the case.

5. The Putative Best System Is Not the Best System. I now assume that
a DMH notion of fit can be defended in one way or another.5 Then a
further problem emerges: the package consisting of Hamiltonian Me-
chanics, PH, and PHSP in fact is not the best system. The reason for this
is that we can always improve the fit of a system if we choose a measure
that, rather than being uniform over , is somehow peaked over thoseGMp

initial conditions that are compatible with the entire DMH.
Let us make this more precise. The probability of the DMH is

, where the are those subsetsp(DMH ) p p (B FQ ) . . . p (B FQ ) Bt t t t t t t0 0 0 j�1 j�1 j�1 i

4. I assume to be finite. There is a further problem with infinite sequences (Elgaj
2004). The difficulties I discuss in this Section and the next are independent of that
problem, and Elga’s solution is available also in the present context.

5. I make this choice for convenience; the problem that I describe in this Section also
arises for the other two options.
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of that evolve into under the evolution of the system. One canG GM Mt ti i�1

then prove that

p(DMH ) p m [G ∩ f (G ) ∩ . . . ∩ f (G)], (2)0 p �t 1 �t j1 j

where and for . Now defineG :p G G :p G i p 1, . . . , j N :p G ∩p M i M pp ti

. The fit of system is measured by the probability thatf (G ) . . . f (G)�t 1 �t j1 j

it assigns to the actual DMH, which is given by Equation (2). It is a
straightforward consequence of this equation that the fit of a system can
be improved by replacing by a measure that is peaked over . Fitm m N0 P

becomes maximal (i.e., ) if, for instance, we choose the mea-p(DMH ) p 1
sure that assigns all the weight to N and none to . Trivially,m G \ N NN p

contains the actual initial condition of the universe. A simpler and more
convenient distributions that yields maximal fit is a Dirac delta function
over the actual initial condition.

If there is such a simple way to improve (and even maximize) fit, why
does the demon not provide us with a system comprising or a deltamN

function? Coming up with such a system is not a problem for the demon,
as, by assumption, the demon knows the entire Humean mosaic, which
contains the exact initial condition.

A reason to prefer to other measures might be that these make them0

system less simple and that this loss in simplicity is not compensated by
a corresponding gain in fit and strength. This seems implausible. Handling
a Dirac delta function rather than does not render the system morem0

complicated while the gain in fit is considerable. Hence, simplicity does
not seem to provide reason to prefer to other measures that have betterm0

fit.

6. Outlook: Epistemic Probabilities after All. The system consisting of
Hamiltonian mechanics, PH, and PHSP is not the best system, and there-
fore PHSP probabilities cannot be interpreted as L-chances. In this section
I first want suggest that the probabilities in this system are best understood
as epistemic probabilities of sorts and then indicate how this view could
be defended against some common objections.

Every theory involving probabilities must answer the question of what
these probabilities are probabilities for. The initial conditions approach
to chance does not seem to have an answer to this question. The universe
has exactly one initial microcondition, and there is nothing chancy about
this condition. How, then, can we understand a probability distribution
over initial conditions? The only answer seems to be that this distribution
reflects our ignorance about the systems’s initial microcondition; all we
know is the system’s initial macrostate, and so we put a probability dis-
tribution over the microconditions compatible with that macrostate that
reflects our lack of knowledge.
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How these epistemic probabilities should be understood is a question
that I cannot discuss here. Let me just indicate that there are at least two
options. The first, a version of objective Bayesianism, appeals to Jayenes’s
maximum entropy principle, which indeed instructs us to prefer tom0

alternative measures because, given the information about the system’s
macrostate, maximizes the (continuous) Shannon entropy. The otherm0

alternative is to revise Lewis’s account in a way that builds epistemic
restrictions of the users of theories into the selection criteria for systems.
Hoefer’s (2007) theory of Humean chance makes room for this possibility.

There are two main complaints about an epistemic interpretation of
SM probabilities. The first points out that the thermodynamic entropy is
a property of a physical system and that coincides with it up to aSB

constant. This, so the argument goes, is inexplicable on the basis of an
epistemic approach to probabilities.6 This is wrong because is definedSB

in terms of the measure of certain chunks of phase space, and probabilities
(no matter how we interpret them) have simply nothing to with it.

The second complaint concerns the alleged causal efficacy of human
knowledge. The point becomes clear in the following—rhetorical—ques-
tions by Albert (2000, 64):7

Can anybody seriously think that it is somehow necessary, that it is
somehow a priori, that the particles that make up the material world
must arrange themselves in accord with what we know, with what we
happen to have looked into? Can anybody seriously think that our
merely being ignorant of the exact microconditions of thermodynamic
systems plays some part in bringing it about, in making it the case,
that (say) milk dissolves in coffee? How could that be?

It can’t be, and no one should think that it could. Proponents of epistemic
probabilities need not believe in parapsychology. What underlies this ob-
jection is the mistaken view that PHSP probabilities play a part in bringing
about things in the world. Of course the cooling down of drinks and the
boiling of kettles has nothing to do with what anybody thinks or knows
about them, but they have nothing to do with the probabilities attached
to these events either. Drinks cool down and kettles boil because the
universe’s initial condition is such that under the dynamics of the system
it evolves into a state in which this happens. All we need to explain why
things happen is the initial condition and the dynamics.

Last but not least, the decision to conditionalize on DMH rather than

6. This point is often made in conversation, but I have been unable to locate it in
print.

7. Redhead (1995, 27–28, 32–33), Loewer (2001, 611), Goldstein (2001, 48), and
Meacham (2005, 287–288) make similar points.
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the full macrohistory seems to square better with an epistemic approach
to probabilities. For these reasons I suggest that we take seriously the
option to interpret SM probabilities epistemically.
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