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Abstract The aim of this article is twofold. Recently, Lewis has presented an argument, now
known as the “counting anomaly”, that the spontaneous localization approach to quantum
mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply
to ordinary macroscopic objects. I will take this argument as the starting point for a discussion
of the property structure of realist collapse interpretations of quantum mechanics in general. At
the end of this I present a proof of the fact that the composition principle, which holds true in
standard quantum mechanics, fails in all realist collapse interpretations. On the basis of this
result I reconsider the counting anomaly and show that what lies at the heart of the anomaly
is the failure to appreciate the peculiarities of the property structure of such interpretations. Once
this flaw is uncovered, the anomaly vanishes.

1. Introduction: collapse interpretations, tails, and the counting anomaly

Lewis (1997) considers a marble and a box. The marble has two states, namely ��in� (the
marble is inside the box) and ��out� (the marble is outside the box). These states are
mutually exclusive and therefore orthogonal; that is, ��in��out� � 0. Furthermore, con-
sider a measurement device B̂, measuring whether the marble is inside or outside the
box. Quantum mechanics (QM) has it that not only eigenstates of B̂, ��in� and ��out�, but
any superposition ��m� � a��in� � b��out� of these can be the state of the marble system
(where a and b are arbitrary complex numbers satisfying �a�2 � �b�2 � 1). But what are the
physical properties of a system in such a state? The answer to this question obviously
depends on how the connection between quantum states and physical properties is
construed. The standard way to relate quantum states and properties is the Eigenstate–
Eigenvalue Rule (“E–E rule” henceforth).1

An observable Ô has a well-defined value for a quantum system S in state ���
if, and only if, ��� is an eigenstate of Ô.

Since ��m� is not an eigenstate of B̂, it defies interpretation on the basis of the E–E rule
and the marble is neither inside nor outside the box. But this conclusion is obviously
unacceptable, since our experience indicates that the marble has a definite location.
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Reconciling everyday experience with this unwelcome consequence of the quantum
formalism is the infamous measurement problem.

In an attempt to overcome this difficulty, von Neumann (1955) postulated that
whenever a measurement is performed on the system its state instantaneously collapses
into one of the eigenstates of the measured observable. What we are left with then
is a state that can be interpreted on the basis of the E–E rule without any difficulty.
However, although the collapse postulate restores the interpretability of the
post-measurement state in terms of the E–E rule, it turns out that it raises more
problems than it solves. What defines a measurement? At what stage of the measure-
ment process does the collapse take place (trigger problem)? Why should the properties
of a system depend on actions of observers or, even worse, on their minds in the first
place?

An ingenious way to overcome these difficulties has been suggested by Ghirardi et
al. (1986) and has been put in a particularly elegant and simple form by Bell (1987).
It has become customary to refer to this account as “GRW theory”. Its leading idea is
to evade the above-mentioned problems by reformulating collapse interpretations in a
way that avoids appeal to observers. This is achieved by no longer considering collapses
as measurement-induced and making them an integral part of what happens in nature;
collapses “just happen” at random in nature and do not in any way depend on
observers. To be more precise, GRW theory postulates that in an N-particle system a
collapse occurs once in �/N s, where � is a new constant of nature (which, according to
GRW, is of the order of 1015 s). To flesh this basic idea out, GRW theory provides a
well-defined collapse mechanism, but since the details do not matter for what follows I
will not dwell on them here.

Unfortunately this is not the end of the story yet. Collapses have been introduced
to ensure that the system is in an eigenstate of some observable, B̂ for instance, at the
conclusion of a measurement, but upon closer examination it turns out that this is
exactly what they generally cannot achieve. A collapse can leave the system in a proper
eigenstate only if the basis is discrete. In the case of continuous observables, such as
position, this is not possible. (This point is directly relevant to the above example, since
measuring whether a marble is in the box amounts to measuring its position.) There are
three independent reasons why a collapse to a position eigenstate, say, is unattainable.
First, as a consequence of the uncertainty relation, the more localized a wave function
is in position space, the higher its dispersion in momentum space becomes, and the
more energy the system can possess after a collapse. Thus, if we allow for strongly
localizing collapses, the system could spontaneously heat up (Clifton & Monton, 1999,
p. 698). However, such spontaneous heating has never been observed. Therefore, a
collapse cannot render the wave function too narrow without contradicting experimental
facts. Second, it is by now a well-known property of QM that a wave function which,
at a certain instant, lacks tails (i.e. has no parts that extend to infinity) will always
instantaneously grow them back. Hence, even if a strongly localizing collapse were
allowed to occur, an instant later we would be back where we started. Third, the
position eigenstate �x� is not even an element of the (separable) Hilbert space which is
the state space of the system. To accommodate states like �x� one would have to move
to a formulation of QM based on a rigged Hilbert space, and it is still controversial
whether this is the right move.

As a consequence of this, a system’s wave function cannot be arbitrarily narrow
after a collapse. At the conclusion of a reduction process, we find the system in a state
exhibiting tails. The GRW theory does justice to this limitation since a GRW-hit does
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not leave the marble in a precise eigenstate of the position operator but in a state that
is “close” to it in the sense that it is a somehow “smeared out” eigenstate
(technically speaking, the original state � gets multiplied by a Gaussian which makes it
more localized, but it never becomes equal to a proper position eigenstate).

However, now we are back where we started. If at the conclusion of a collapse the
system is not in a proper position eigenstate, the E–E rule is not applicable and we
cannot tell what the location of the object is. So an alternative to the E–E rule is needed.
Common physical wisdom has it that “close” is actually good enough. In order to say
that a particle is located at x, it is too restrictive to require that the system’s state is �x�.
Rather, it is sufficient to say that it is somewhere “within a narrow interval around x”
(see for instance Sakurai, 1994, pp. 42–43). This idea has recently been rendered more
precise and introduced into the philosophical literature by Albert and Loewer (1995).
According to them, a particle with wave function �(r) is located in the interval R iff the
major part of ��(r)�2 is in R; that is, iff �R��(r)�2 dr � 1 � 
, where 
 is a positive real
number close to zero. The generalization of this rule to a system with n degrees of
freedom is straightforward: the system with wave function �(r1, …, rn) is located in the
n-dimensional interval R1 � … � Rn iff �R1 � … � Rn ��(r1, …, rn)�2 dnr � 1 � 
. Clifton and
Monton (1999) call this rule the “fuzzy link”. The choice of an appropriate value for 

is a subtle issue, and I will have more to say about it later on. In what follows I will use
the label “fuzzy quantum mechanics” (FQM) to refer to any interpretation of QM that
takes into account the fact that collapses do not leave the system in precise (position)
eigenstates and that interprets these non-eigenstates in terms of the fuzzy link—in
particular, GRW theory and a realistically understood von Neumann collapse theory fall
under this category.

The fuzzy link naturally gives rise to the following definition.

Let e1, …, en be n arbitrary entities (e.g. marbles). Then the ensemble2

consisting of these entities, E � {e1, …, en}, with wave function �(r1, …, rn) has
the property of being in the interval R1 � … � Rn iff

�
R1 � … � Rn

��(r1, …, rn)�2 dnr � 1 � 
. (1)

Furthermore, let P
, R1 � … � Rn (e1, …, en) be the proposition stating that E has
the property of being in the interval R1 � … � Rn; this proposition is true iff
equation (1) holds.

Note that E can also consist of just one object e. In this case the definition reduces
to: the entity e with wave function �(r) has the property of being in the interval R, i.e.
P
, R(e) is true, iff �R��(r)�2 dr � 1 � 
.

Let’s now see how all this bears on the marbles. For the reasons outlined above, the
best we can expect is to find the system after a collapse in a highly asymmetric state of
the form ��m� � a��in� � b��out� (or ��m� � b��in� � a��out� likewise) where 1 � �a� � �b� � 0
and �a�2 � �b�2 � 1. According to the fuzzy link, if �b�2 � 
 then the marble is in the box:
�Rin ��m(r)�2 dr � �a�2 � 1 � 
, where Rin is the region we associate with being in the box.

So far so good. However, in his recent paper Lewis (1997) has presented an
argument to the conclusion that this relaxation of the E–E rule entails that arithmetic
does not apply to ordinary macroscopic objects such as marbles. This argument is now
commonly referred to as the “counting anomaly” and runs as follows. Enlarge your box
and place not only one but a large number n of marbles in it. Furthermore, assume that
no interaction takes place between the marbles (this can be accomplished, for example,
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by making the box long and slim so that all marbles lie side by side without touching
each other). The state of the ensemble is ��total� � ��m�1…��m�n.

When we now interpret ��total� in terms of the fuzzy link we are faced with a
paradox. More specifically, we find that the ensemble consisting of the n marbles is not
in the box: �Rin � … � Rin��total�2 dnr � �a�2n, but �a�2n � 1 � 
 since �a� is smaller than 1.
Hence, we make up a system of n marbles each of which individually is in the box and
end up with an n-marble system which is not in the box. This paradox is called
“counting anomaly” for the following reason. Making sure that marble 1, marble 2, …,
marble n are in the box is exactly how we count marbles (Lewis calls this the
“enumeration principle”), and this means that putting one marble after the other in the
box is structurally identical to the process of counting. But, as the above argument
shows, by doing so we end up with a state in which it is false that the ensemble of
marbles ends up being in the box. Hence counting is impossible and we must conclude
that arithmetic does not apply to macroscopic objects such as marbles—that is the
counting anomaly.

Finally I should stress again that although this anomaly has been presented as an
argument against GRW theory in particular, the above discussion has made it clear that
it equally threatens every interpretation of QM that falls into the category of FQM.3

Even if we were to solve all the problems in connection with the notion of measurement
(the trigger problem and so on), the counting anomaly would still await a solution.

2. Unsuccessful routes around the anomaly

This anomaly is embarrassing and calls for a solution. In this section I discuss three
attempts to deal with it, all of which turn out to fail, as I shall argue. The first turns on
the fact that position, as construed by the fuzzy link, is a vague notion; the second and
the third are arguments put forward in a debate between Ghirardi and Bassi (1999) and
Bassi and Ghirardi (1999, 2001) on one side, and Clifton and Monton (1999, 2000) on
the other side. These failures suggest that deeper reflection on the problem is needed.
In the following section I will prove a general theorem about the property structure of
collapse interpretations and show how this theorem can be brought to bear on the
anomaly.

Suppose we have a heap of sand (Sainsbury, 1995, pp. 23–24). Now we remove one
grain, what remains is still a heap—removing a single grain cannot turn a heap into
something that is not a heap. Nevertheless, if we keep removing one grain after the
other, we end up with no grains at all, and no grains certainly do not make up a heap.
So it seems that there must be a least number of grains which still makes up a pile. But
what is this number? We simply may not know, or we arguably can think that it is just
silly to assume that such a number even exists. But isn’t location, as construed by the
fuzzy link, just like the number of grains in a heap? Yes it is. How close to zero need

 be in order to have a localized state? Albert and Loewer (1995, pp. 87–92) discuss the
issue of the choice of a correct value for 
 at length and come to the conclusion that,
apart from the obvious restriction that 
 has to be larger than zero and smaller than one
half, there fails to be any precise matter of fact about what the correct value of 
 is.

Does this give rise to a revision of the anomaly? If there is, after all, no unique
correct value for 
, is it not possible to evade the anomaly by being a bit more liberal
about the admissible values of 
? Concretely, this suggestion amounts to saying that
even if �Rin � … � Rin��total�2 dnr � 1 � 
, there always exists an 
 such that �Rin � … � Rin
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��total�2 dnr � 1 � 
. Since there is no one single correct value for 
, there is no reason
why we should prefer 
 to 
 and hence all marbles are in the box.

Unfortunately, a closer look at the actual numerical values reveals that in general
this will not do. If a sufficiently large number of marbles is available, �Rin � … � Rin��total�2

dnr � �a�2n can be as close to zero as we please and even on a liberal reading one then can
no longer say that the n marbles are in the box (since 
 � 1/2). Another suggestion
would be to make the original 
 in the one-marble fuzzy link smaller instead of the one
in the n-marble fuzzy link bigger. But here we also run into trouble. By making 
 smaller
we get closer to a proper position eigenstate, and when 
 is small enough we may require
more than what is physically possible. For the reasons mentioned above, there are limits
as to how close a physical state can come to a position eigenstate and 
 cannot be
arbitrarily small. But then we cannot evade the conclusion that, by taking a large enough
number of marbles, �a�2n almost equals zero and the n-marble ensemble cannot possibly
be inside the box.4 The upshot of all this is that fiddling around with the value of 
 does
not help.

This anomaly has also been the starting point of a lively debate between Ghirardi
and Bassi on one side and Clifton and Monton on the other. The scope of this debate
is restricted to the discussion of the anomaly within the context of GRW theory. The
remainder of this section will be devoted to a discussion of the arguments put forward
in this debate. My conclusion will be that none of the lines of reasoning taken in this
debate leads to a solution of the problem.

In a first reply to Lewis, Ghirardi and Bassi (1999) have argued that the alleged
anomaly is not an anomaly at all and dismiss the argument as “devoid of any sense”.
They argue that the state ��total�, on which the argument turns, is not stable according
to GRW dynamics and will collapse immediately to an unproblematic state. Clifton and
Monton (1999) have pointed out that this is not correct. They show that even if ��total�
is reduced immediately, the reduced state still has tails and therefore gives rise to the
same difficulty.

Clifton and Monton consider the counting anomaly to be a serious problem for the
GRW theory, one that calls for a solution. For this reason, in the second part of their
paper, they present a sophisticated argument for the conclusion that while the enumer-
ation principle can fail, GRW theory itself ensures that this failure can never be observed.
They point out that once the counting apparatus which records how many marbles are
in the box is modelled correctly on the basis of the principles of GRW theory, i.e. once
we give a correct operationalization of the counting process, the anomaly disappears. In
three subsequent papers (Bassi & Ghirardi, 1999, 2001; Clifton & Monton, 2000) each
of the parties defends its view but no new arguments come into play.

Where does all that leave us? Though there is no agreement as to what the correct
solution of this problem is, in the end, both parties at least agree that the anomaly can
be dismissed. Does that mean that the clouds over GRW have been blown away and the
sky is clear again? I do not think so. On the contrary, it seems to me that notwithstand-
ing everything that has been said so far, the problem has not been solved. There are two
reasons for this. First, Ghirardi and Bassi’s reply is flawed for the reasons Clifton and
Monton have pointed out. I have nothing to add to their argument. But, second, Clifton
and Monton’s own solution does not seem satisfactory to me either.

Let’s briefly recall their argument. The crucial question is whether it is sufficient or
not to suppress the anomaly. Can we continue to take the theory seriously just because
there is a mechanism that suppresses the manifestations of the anomaly? Clifton and
Monton are quite sensitive to this question and discuss it at length in the last section of
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their paper (1999). They point out that “by itself” suppressing the empirical manifesta-
tions does not resolve the problem. Nevertheless, their final answer to the above
question is “yes”. They justify their decision as follows. Prima facie, GRW is a theory
about wave functions, and nothing else. It is only once we relate these wave functions
to our ordinary language via the fuzzy link that all these problems can crop up. The
fuzzy link does not add anything of ontological import to the theory, but simply provides
a way of mapping our “particle” language on to a theory whose fundamental language
concerns wave functions. Therefore, the fuzzy link has something of “the status of a
postulate that (to echo Reichenbach […]) ‘is neither true nor false, but a rule which we
use to simplify our language’ ” (Clifton & Monton, 1999, p. 716). Hence, the fuzzy link
does not in any way occupy a prominent place in the theory, and for this reason
suppressing the anomaly seems to be enough.

I don’t think that this argument is satisfactory. Though there is nothing inherently
wrong with it, it contradicts the spirit of GRW theory. This is because GRW falls into
a class of proposals which attempt to salvage a firmly realist view of QM, that is one in
which things have, or at least end up having, definite properties. And this must be true
not only of waves, but also of ordinary objects. Cats really are dead or alive; the
predicates “dead” and “alive” are not merely convenient jargon we introduce to
facilitate our language.5 To make the connection between the wave function and
ordinary properties a mere postulate we use to simplify our language, which as such is
neither true nor false, gives the theory an antirealist thrust that is foreign to its spirit. For
this reason, I think, we must be able to tell a clear and anomaly-free story about how
to retrieve particle properties from wave functions if we want to continue to take the
theory at all seriously—merely suppressing the anomaly is not enough.

In what follows I will try to sketch how this can be achieved. The solution I will
offer is simple and straightforward. There is no counting anomaly. The alleged anomaly
is based on the seemingly plausible but faulty assumption that the composition principle
holds in FQM. In the following section I will introduce this principle, prove that it holds
true in standard quantum mechanics (SQM) and show that and how it fails in FQM.
I then argue that what lies at the heart of the anomaly is the failure to appreciate this
peculiar feature of the property structure of collapse interpretations. Once this is
realized, the anomaly vanishes. What remains, however, is a violation of common sense.
Our everyday experience tells us that the composition principle holds true for spatial
properties (an intuition which is borne out in classical mechanics as well as in SQM) and
it is quite irritating to realize that this is wrong in FQM. Yet it is not the first time that
everyday experience turns out to be a bad guide in quantum matters, and so we should
neither be too surprised nor too worried about being forced to give up an element of our
common intuition.

3. The composition principle and its failure in FQM

The composition principle posits that if every object ei of an ensemble E � {e1, …, en}
has property P, then the ensemble E itself has property P as well, and vice versa.
Formally, Pe1&…&Pen iff PE; or if we do not restrict ourselves to finite ensembles:
∀x(x � E → Px) iff PE. Both sides of these biconditionals refer to properties of the
ensemble E. “PE” means that the ensemble E itself has property P whereas “Pe1&…&Pen”
expresses the fact that every member of E has property P. When we call the latter property
P̃, the composition principle simply reads: P̃E iff PE. This principle holds true in many
cases. If a couple of objects of temperature T are put together the resulting “composite



REALIST COLLAPSE INTERPRETATIONS 49

object” still has temperature T, or if all objects are blue the ensemble is blue as well.
However, this principle does not always hold true. Water is wet but water molecules are
not; gases have a temperature, gas molecules do not; horses have a heart, a herd of
horses does not; each musician of an orchestra plays an instrument but the orchestra as
a whole does not, and so on. More sophisticated examples include well-known problems
from the philosophy of the social sciences: one cannot infer from the premise that every
individual is rational to the conclusion that a group of individuals is rational in the same
sense; or what is good for each individual need not necessarily be good for the
community.

These examples highlight that to assert P̃E is prima facie not the same as to assert
PE. To say that every member of an ensemble has a certain property P is different from
saying that the ensemble itself has this property—P̃ and P are two distinct properties,
and P̃E and PE are not logically equivalent. As a consequence, P̃E and PE cannot be
used interchangeably. If we nevertheless wish to do so, the composition principle has to
be invoked to “bridge the gap” between the two. This principle, however, is not a truth
of logic and its validity in a given context needs to be justified. If we fail to provide such
a justification and assume, without further argument, that the composition principle
holds true, we are guilty of a fallacy of composition.

How does this bear on the marbles? Let ei, i � 1,…, n, stand for the marbles and
E � {e1, …, en} for the ensemble of all marbles . Now, everything that has been said so
far about properties of ensembles and their members also applies to the property “being
in the box” all members of the ensemble E being in the box and the ensemble E itself
being in the box are two different states of affair. Despite their seeming equivalence, it
is prima facie not the same to assert that all members of the ensemble E are in the box
and to assert that the ensemble E itself is in the box.

One might now be inclined to dismiss this point as futile logical hair-splitting, since
“being in the box”, or more generally “being located within the interval R”, seems to be
a clear example of a property for which the composition principle holds: if all members
of E are located in the interval R then the ensemble E itself is located within R as well.
In this section I will prove that this intuition, though borne out in SQM, fails in FQM.
The situation is the following. In SQM it is possible to prove the composition principle
as relating to position as a theorem, and as a consequence spatial properties of an
ensemble and spatial properties of its members can be used interchangeably—as we
would expect it to be. This, however, is no longer true in FQM. Within this framework,
the composition principle is provably false and therefore properties of ensembles and
properties of their members must be carefully distinguished. And it is this peculiarity of
FQM, I will argue, that lies at the heart of the so-called counting anomaly.

The composition principle

Consider an ensemble in a disentangled state �(r1,…, rn) � �1(r1)…�n(rn). Furthermore,
notice (for details see the Appendix) that we retrieve the usual definitions of a property
in SQM if we set 
 � 0 and replace “ � ” by “ � ” in equation (1); for this reason I drop
the subscript “
” and just write PRi (·) and PR1 � … � Rn (· ,…, ·), respectively, where
R1, …, Rn are finite but otherwise arbitrary intervals. Then one can prove that the
following holds in SQM.

Composition principle (CP):

PR1(e1)&…&PRn(en) is true if, and only if, PR1 � … � Rn(e1, …, en) is true.
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The proof is straightforward and will be given in the Appendix. As a consequence,
PRin (e1)&…&PRin (en) and PRin � … � Rin (e1, …, en) can be used interchangeably in SQM,
that is, the ensemble E is in the box if all its members are in the box as well, and vice
versa—just as we intuitively expect it to be.

This situation changes drastically in FQM. A brief look at the proof of CP reveals
that the implication which goes from left to right no longer holds when one moves from
SQM to FQM, and therefore CP is not valid any more (see again the Appendix for
details). The best we can obtain in this case is the following.

Restricted composition principle (RCP):

If P
, R1 � … � Rn (e1, …, en) is true, then P
, R1 (e1)&…&P
, Rn (en) is true as well,
but not vice versa.

Applied to the marbles case RCP says that if the ensemble of all marbles is in the
box, then every one of its members is in the box as well. The converse, however, is false:
if every member of the ensemble, i.e. every individual marble, is in the box, the same
need not be true for the ensemble. Admittedly, this is counter-intuitive, but that simply
is how things are in FQM.

The failure of the composition principle and the counting anomaly

I now argue that what lies at the heart of the anomaly is an unwarranted use of the
composition principle. To see how this comes about note that, from a logical point of
view, the anomaly amounts to holding the following three contradictory statements. (1)
P
, Rin (e1)&…&P
, Rin(en) and P
, Rin � … � Rin (e1, …, en) are the same, (2) P
, Rin(e1)&…&P
,

Rin (en) is true, (3) P
, Rin � … � Rin (e1, …, en) is false.6 Moreover, note that the anomaly
does not arise in SQM because premise (1) holds and P
, Rin � … � Rin (e1, …, en) is true,
hence the three statements are consistent.

While there is nothing wrong with (2) and (3), (1) is false. Since CP fails in FQM
there is no reason to identify the two. This changes the situation drastically. If (1) is
removed from the argument no contradiction can be derived—and with the contradic-
tion the anomaly vanishes as well.

This needs some spelling out. In order to see how driving a wedge between P
, Rin

&…&P
, Rin and P
, Rin � … � Rin dissolves the anomaly, some reflection on the nature of
these propositions and the properties of the system they are ascribed to is required.7

How do we check that all marbles are in the box? I take it that what we do is no
more and no less than making sure first that marble 1 is in the box, second that marble
2 is in the box, and so on through marble n. If this is the case, then all n marbles are
in the box. Lewis (1997, pp. 320–321) refers to this as the “enumeration principle”.
That is, we check one marble after the other and if we find each of them in the box then
all are in the box. Given this procedure, the only thing we need in order to have all n
marbles neatly in the box is that P
, Rin&…&P
, Rin is true.

“But what about P
, Rin � … � Rin? Doesn’t it represent the state of affairs of all marbles
being in the box just as well?”, one might now ask. No it doesn’t—that is the crucial
thing to realize. The procedure for ensuring that all marbles are in the box as described
above does not square with this proposition. There is no reason to assume
that P
, Rin � … � Rin should be true if the only thing we do is to observe one marble after
the other and to make sure that it is in the box. Or to put it differently, the assumption
that P
, Rin represents the state of affairs of all marbles being in the box is unwarranted.
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One might now try to resist this point by arguing that it is (at least intuitively)
obvious that P
, Rin � … � Rin represents the state of affairs of all marbles being in the box,
regardless of whether or not it squares with the above procedure. But this reply is
effectively undercut by the failure of CP in FQM. From what has been said so far it is
clear that P
, Rin&…&P
, Rin does represent the state of affairs at stake. Therefore, if we
want to establish that P
, Rin � … � Rin equally does, we are (at least) committed to the claim
that these two propositions are true of the same things (i.e. that they are extensionally
equivalent). A minimal condition for this to be correct is that the two have the same
truth conditions. But this is not the case, as the failure of CP instructs us. There are
cases where P
, Rin&…&P
, Rin is true while P
, Rin � … � Rin fails. For this reason, the two are
not extensionally equivalent and I conclude that, provided we grant that the former
expression represents the state of affairs of all marbles being in the box, the latter fails
to do so.

But if P
, Rin � … � Rin does not represent the state of affairs of all marbles being in the
box, what then does it represent? The property has so far always been paraphrased as
“the ensemble being in the box”. This nice phrase masks the fact that we actually don’t
have any firm grip on what this property is. When we think about an ensemble of
marbles, what we have in mind is, roughly speaking, a bunch of individuals sitting there
in the box. But this is precisely not what P
, Rin � … � Rin expresses: it just is not the property
of each marble sitting in the box. Although P
, Rin � … � Rin implies that all marbles sit in
the box (by RCP), this does not exhaust its meaning, as the failure of CP shows. But
what then does?

I have no answer to this question; and I think we don’t need one. First, the interest
in P
, Rin � … � Rin is based on the belief that it reflects the “counting property”, but, as I
have argued, this is not the case. For this reason we don’t need it and we don’t yet have
a need to worry about its interpretation. Second, it is in general a mistake to think that
everything we can define in the formalism represents something interesting in the world.
Not every expression we can write down corresponds to a property that is physically
relevant and that is accessible to observation. Some expressions that the formalism
allows for may be no more than mathematical constructs not amenable to measurement
and without physical significance; and P
, Rin � … � Rin may well belong to this class.

To sum up, we don’t have to bother about P
, Rin � … � Rin because, first, it does not
play any role in the problem at hand (since it does not represent the state of affairs of
all marbles being in the box) and, second, there is no prima facie reason to assume that
it represents anything of physical interest.

Once we get rid of the faulty identification of the two propositions P
, Rin&…&P
, Rin

and P
, Rin � … � Rin the contradiction, and with it the anomaly, vanishes. We put n marbles
in the box and indeed end up having them there; we have been fooled into believing that
they are not by the falsity of P
, Rin � … � Rin. But this is just not relevant to the issue of
where the marbles are. The failure of CP in FQM has the counter-intuitive consequence
that we are forced to divorce two propositions which intuitively seem to be the same (or
at least extensionally equivalent)—an intuition which is borne out in classical mechanics
as well as in SQM. But this is a matter of fact about propositions and not an anomaly.

To drive my point home I have to deal with a further problem. There is an argument—
endorsed by Lewis (1997, p. 320) and echoed in Clifton and Monton (2000, p. 160)—for
the conclusion that it is unacceptable to assert that all marbles are in the box on the
grounds that there is a vanishing probability in the state ��total� � (a��in � �
b�� out�)1…(a��in� � b��out�)n of finding them there. The argument is straightforward and
runs as follows. Born’s rule tells us that the probability of finding the system in state
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��in�1…� �in�n is �a�2n; and since �a�2n � 1, there is a vanishing probability of finding all the
marbles in the box.

This argument is flawed. But it is flawed in an interesting way because it draws our
attention to an issue that does not seem to be much discussed, namely how to calculate
probabilities in FQM. Given that FQM alters the conditions for a property to obtain,
one would expect that the way to calculate the probability for this to happen has to be
altered as well. In the remainder of this section I argue that this is indeed the case and
show that the above argument is flawed because it uses a way of calculating probabilities
adequate to SQM but not to FQM.

To get the gist, consider a marble in state ��m� � a��in� � b��out�. What is the
probability p of it being true that the marble is in the box? In SQM we associate this with
the eigenstate ��in� and using Born’s rule we get p � �a�2. However, in FQM by definition
it is true that a system is in the box if it is in some state ��m� where �a�2 � 1 � 
. Given
this, it does not make sense to say that the probability of finding the marble in the box
equals �a�2 in ��m�. We cannot both define the conditions such that the proposition is
true when the system is in state ��m� and at the same time take the probability of the
proposition to be true to be smaller than 1. This is contradictory. If we allow a
proposition to be true in non-eigenstates, we have to take these same non-eigenstates
when using Born’s rule to calculate probabilities. In the present example, perhaps one
might say that the FQM probability of a marble in state ��� to be in the box is �����m��2,
and not �����in�, as SQM has it.8

From this it is clear where the rub lies. It is true that the probability of finding the
system in state ��in�1…��in�n is vanishingly small, but from this it does not follow that the
probability of finding all the marbles in the box is equally small. It is the leading idea of
FQM that less than a precise eigenstate is needed in order for a property to obtain.
However, Lewis’ argument infers from the fact that the probability of finding the system
in state ��in�1…��in�n is small that the probability of finding it in the box is equally small,
and thus implicitly associates “being in the box” with the state ��in�1…��in�n. Thereby it
carries over to FQM a way of thinking about probabilities that is inappropriate to it. It
is the whole point of FQM that it is too restrictive to require the system to be in a
precise eigenstate in order for it to be true that the marbles are in the box; “being in the
box” can be true in a state that is somewhat close but not equivalent to ��in�1…��in�n. For
this reason it is true in SQM but not in FQM that the probability of finding all marbles
in the box equals �a�2n. The correct probability of finding all marbles in the box seems
to be p � ���total �(��m�1…��m�n)�2, which immediately yields that the probability of finding
all marbles in the box is one, as one would expect within FQM.

4. Objections

In this section I consider two objections to the dissolution of the anomaly I have just
presented.

First, to discuss a property of the ensemble as a whole, one must represent that
property using a “collective variable” (such as the centre of mass of the total system, for
instance) and a mere n-tuple of positions does not make up a collective variable.9 For
this reason, P
, R1 � … � Rn does not truly reflect a property of the ensemble but is merely
another way to describe a bunch of single particle properties. But since I maintain that
the anomaly is dissolved by realizing that the property of the ensemble being in the box
is not equivalent to the property of each and every marble individually being in the box,
my argument depends on the claim that P
, R1 � … � Rn indeed reflects a claim about the



REALIST COLLAPSE INTERPRETATIONS 53

ensemble. Hence, so the objection goes, my argument is flawed because it turns on this
faulty assumption.

I don’t think that this argument is conclusive. Representability by a “collective
variable” is certainly a sufficient, but not a necessary condition for a collective property.
The underlying intuition of this objection seems to be that P
, Rin � … � Rin does not make
a genuine claim about the ensemble because the operator involved is just a tensor
product, and as such merely “patches together” single marble properties without adding
anything to them.

This, however, is to carry over to FQM a criterion of identity from SQM that is no
longer appropriate. To individuate a property it is not sufficient to specify an operator;
we also have to provide truth conditions. And it is at this point where SQM and FQM
diverge.10 Due to the fact that CP obtains in SQM the truth conditions for PR1 � … � Rn

are equivalent to the ones for PR1&…&PRn and for this reason it is true that forming a
product does not add anything to the properties possessed by the individuals.

However, this is no longer the case in FQM. The truth conditions for P
, R1 � … � Rn

are, as the failure of CP shows, different from the ones for P
, R1&…&P
, Rn. Therefore,
I think, it reflects a genuine property of the ensemble.

The second objection slightly changes the set-up of the experiment and considers
n individual boxes, one for each marble, instead of one big box. Then, so the argument
goes, one cannot even commit a fallacy of composition because committing the fallacy
involves the attribution of the very same property (being in the box) to the ensemble as
a whole and to its members. But if every marble is in a different box, spatially separated
from all the other boxes, there simply is no such property because there is not even a
uniform property assigned to the marbles.

To meet this objection it suffices to realize that nothing in the above argument
hinges on the fact that all marbles are within the same box. Putting all the marbles in
different boxes (instead of just one box) amounts to replacing P
, Rin&…&P
, Rin by P
, R1

&…&P
, Rn, where R1, …, Rn are non-overlapping intervals associated with the n one-
marble boxes, and substituting P
, R1 � … � Rn for P
, Rin � … � Rin. The “individual box
version” of the anomaly then is: E has the property that one of its members is within R1,
one within R2, …, and one within Rn while, as an ensemble, it fails to be located within
the n-dimensional interval R1 � … � Rn. Logically, this comes to holding the following
contradictory statements. (1) P
, R1&…&P
, Rn and P
, R1 � … � Rn are the same, (2) P
,

R1&…&P
, Rn is true and (3) P
, R1 � … � Rn is false.
But by now it is obvious that this does not pose any threat to my line of argument.

Even if all intervals Rj are different, the failure of CP, as formulated in Section 3, assures
that the truth of P
, R1 � … � Rn does not follow from the truth of P
, R1&…&P
, Rn. For this
reason premise (1) is false. As a consequence, the anomaly vanishes, just as in the
“single box version” of the argument. So, after all, it has not much bearing on the
anomaly whether one thinks of all the marbles being put in one single box or of each
marble being located in an individual box, spatially separated from all the others.

5. Facing the consequences

Where does this leave us? I have argued that since we are dealing with a bunch of
non-interacting marbles, it is sufficient for the marbles to be in the box that P
,

Rin&…&P
, Rin holds. Nothing else is needed. Since this conjunction holds true by
assumption, each marble is neatly in the box as we expect it to be and no anomaly pops
up. And similarly for arithmetic. Since counting is a process that is concerned with
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individual objects rather than with ensembles as a whole, the thing we need in order to
count is that the conjunction of all P
, Rin(ej) is true. The general lesson we learn from
this discussion is that the property structure of FQM is far more complex than that of
SQM—that is the price we have to pay for the admission of non-eigenstates as
property-bearing states.

All this may strike one as rather peculiar and one might be inclined to interpret the
failure of CP and the resulting proliferation of properties as a reductio ad absurdum of
FQM. Although one certainly can (and many probably will) adopt this point of view, it
is by no means compelling to do so. The failure of compositionality, in some form or
another, is a problem that besets other interpretations of QM (some brands of the modal
interpretation, see Clifton, 1996, pp. 385ff.) and more generally other domains of
philosophy as well. In the remainder of this section I briefly discuss how the problem
arises in epistemology and draw some parallels to the failure of CP in FQM.

Consider a lottery of a million tickets and just one price. Hence I have good reasons
to believe that the one ticket I bought will not win. But the same argument goes through
for every ticket, and it is therefore rational to believe that each ticket will not win. Thus,
I seem justified in believing that ticket No. 1 will not win, and ticket No. 2 will not win,
and …, ticket No. 1,000,000 will not win. If we now assume that the (informal version
of the) composition principle (in this context often referred to as the “conjunction
principle”) holds—i.e. that given we are justified in believing p, and we are also justified
in believing in q, then we are justified in believing (p&q)—then we come to the
conclusion that no ticket at all will win. This is the by now well-known lottery paradox,
first developed in Kyburg (1961, p. 197). The conclusion is false but apparently
justified. So we are in the awkward position of being justified to believe in the
conjunction of individually justified propositions although we know that it is false. This
paradox gave rise to extended debates and there is no generally agreed-upon solution,
but one obvious way to evade the difficulty is to reject the composition principle for
justified belief.

Another related epistemic paradox arises if we posit (plausibly) that we know p if
our subjective probability that p is true is at least 0.95. However, adopting the
composition principle we run into the same problem. Given we know p1, …, p100 with
probability 0.95, the probability of p1&…&p100 is 0.95100 which is much smaller than
0.95. Hence, we don’t know p1&…&p100 although we know p1, …, p100 individually.

There are striking similarities between these epistemic paradoxes and the counting
anomaly. Both deal with individual objects that have some property while a collection
of individuals, which we intuitively would expect to have the same property, actually
fails to do so. And in all cases there are good reasons to lay the blame on the
composition principle. Nevertheless we keep taking concepts like knowledge and belief
seriously and take these paradoxes to be a challenge for future research rather that a
reason to give up on the issue all together. Why not adopt the same attitude towards
properties in FQM? CP fails and properties proliferate, but that can also be taken as
setting the agenda for further investigation and need not lead to the damnation of the
theory.

Appendix: proof of the composition principle in SQM

First, note that we obtain the usual definition of a property in SQM when the integrals
on the left-hand side of equation (1) are set equal to one. In some more detail, the
argument runs as follows. A system in state ��� has the property U iff ��� � eu��2 � 1, where
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�eu� is the state in the Hilbert space associated with the property U. This is equivalent
to the condition ���P̂eu��� � 1, where P̂eu is the projection operator on �eu�. If there is not
just one single vector, but an entire subspace Su of the Hilbert space associated with U,
the condition reads ���P̂Su��� � 1, where P̂Su is the projection operator on the subspace
Su. Now choose U to be “being located within interval R1 � … � Rn”. Then this
condition reads ���P̂R1 � … � Rn��� � 1. Now expand both ��� and P̂R1 � … � Rn in the position
basis: ��� � �	

� 	…�	
� 	dnr�(r1, …, rn)�r1…rn� and P̂R1 � … � Rn � �R1…�Rn dnr�r1…rn� �r1…rn�.

Plugging this into the above condition (after some calculations) yields:
���P̂R1 � … � Rn��� � �R1 � … � Rn��(r1, …, rn)�2dnr � 1, which is equation (1) with the afore-
mentioned changes.

This said, we are now in a position to prove that CP holds for properties thus
defined.
⇒ : Assume PR1(e1)&…&PRn (en) holds, that is, �R ��i(ri)�2 dri � 1; i � 1, …, n. Since we
built up our collective “n-marble entity” from n non-interacting marbles the state will
not be entangled and can be written as the product of the states of the individual
marbles: �(r1, …, rn) � �1(r1)…�n(rn); and since in SQM the wave functions of a
well-behaved quantum state is integrable we can factorize the integral:
�R1 � … � Rn��1(r1)…�n(rn)�2 dnr � �R1��1(r1)�2 dr1…�Rn��n(rn)�2 drn. By assumption all terms
of this product equal one, hence �R1 � … � Rn��1(r1)…�n(rn)�2dnr � 1. QED.
⇐ : Assume PR1 � … � Rn(e1, …, en) holds, that is, �R1 � … � Rn��1(r1)…�n(rn)�2dnr � 1. Factor-
ize the integral as above: �R1 � … � Rn��1(r1)…�n(rn)�2dnr � �R1��1(r1)�2dr1…�Rn��n(rn)�2

drn � 1. It is an axiom of SQM that �Ri��i(ri)�2dri � 1 for all i � 1, …, n. For this reason
the above product can equal 1 only if �Ri��i(ri)�2dri � 1 for all i � 1, …, n. QED. This
completes the proof of CP for SQM.

Furthermore, it is straightforward to see that the first half of the proof no longer
goes through if the SQM definition of a property is replaced by the fuzzy link; the
second part, however, is not affected by this change. For this reason, CP does not hold
in FQM, but RCP does.
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Notes

1. A classical source for this rule is Dirac (1930, pp. 46–47).
2. The choice of this term is somehow arbitrary, one might just as well use “system”, “collective”, or

“composite entity”.
3. I should note that FQM does not exhaust all collapse interpretations of QM since there may be methods

other than the fuzzy link to associate properties with non-eigenstates. In particular, there is the so-called
mass–density interpretation now favoured by Ghirardi and co-workers (Ghirardi et al., 1995; Bassi &
Ghirardi, 1999). Space constraints prevent me from discussing this approach here. However, not much
seems to be lost by this omission since, as Clifton and Monton (2000, pp. 156–161) point out, the
anomaly equally arises under this interpretation. Moreover, their discussion shows that it arises in the
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same way and for the same reasons as under the fuzzy link interpretation. For this reason, my arguments
in what follows carry over mutatis mutandis to an interpretation of QM based on the mass–density
approach.

4. This, of course, may well involve an unrealistically large number of marbles. As Ghirardi and Bassi (1999,
p. 55) have pointed out, more than the entire mass of the universe may be needed to produce the required
number of marbles. But this does not matter in the present context. Although such considerations my be
important for practical matters, they have no force when it comes to foundational issues.

5. This seems also to be the view of Ghirardi and co-workers. They never denied that a tidy connection
between waves and “ordinary” properties must be established (Ghirardi et al., 1995).

6. The characterization of the anomaly in logical terms is in line with Clifton and Monton (1999, pp. 700
and 703). However, Lewis’ emphasis is on the violation of common sense and not on logical structure.
But this difference is one of style rather than of substance, since what does violence to common sense is
the denial of premise (1) which is implicitly endorsed.

7. To facilitate notation I drop the brackets in what follows and write P
, Rin&…&P
, Rin instead of P
,

Rin(e1)&…&P
, Rin(en) and P
, Rin � … � Rin instead of P
, Rin � … � Rin(e1, …, e1).
8. A problem with this suggestion is that the choice of ��m� is ambiguous. Since according to the fuzzy link,

all ��m� with �a�2 � 1 � 
 have property at stake, any will do. One possible solution to this problem is to
choose the state with the smallest admissible a (�a�2 � 1 � 
) and stipulate that p equals �����m��2 for all
states whose coefficient of ��in� is smaller than a and 1 for all states with this coefficient greater that a.
The last clause is needed to prevent that a state which is closer to the eigenstate ��in� than ��m� is assigned
a probability smaller than one of being in the box. This is a workable suggestion, but it admittedly has
the air of ad hocness to it; the issue of how to calculate probabilities in FQM will certainly need further
consideration.

9. I am grateful to Rob Clifton for having drawn my attention to this point.
10. Thanks to Nancy Cartwright for having pointed this out to me.

References

ALBERT, D.Z. & LOEWER, B. (1995) Tails of Schrödinger’s cat, in: R. CLIFTON (Ed.) Perspectives on Quantum
Reality: Non-relativistic, relativistic, and Field-theoretic (Dordrecht, Kluwer Academic, pp. 81–92.

BASSI, A. & GHIRARDI, G. (1999) More about dynamical reduction and the enumeration principle, British
Journal for the Philosophy of Science, 50, pp. 719–734.

BASSI, A. & GHIRARDI, G. (2001) Counting marbles: reply to Clifton and Monton, British Journal for the
Philosophy of Science, 52, pp. 125–130.

BELL, J.S. (1987) Are there quantum jumps?, in: J.S. BELL, Speakable and Unspeakable in Quantum Mechanics
(Cambridge, Cambridge University Press), pp. 201–212.

CLIFTON, R. (1996) The properties of modal interpretations of quantum mechanics, British Journal for the
Philosophy of Science, 47, pp. 371–398.

CLIFTON, R. & MONTON, B. (1999) Losing your marbles in wavefunction collapse theories, British Journal for
the Philosophy of Science, 50, pp. 697–717.

CLIFTON, R. & MONTON, B. (2000) Counting marbles with “accessible” mass density: a reply to Bassi and
Ghirardi, British Journal for the Philosophy of Science, 51, pp. 155–164.

DIRAC, P.A.M. (1930) The Principles of Quantum Mechanics (Oxford, Oxford University Press).
GHIRARDI, G. & BASSI, A. (1999) Do dynamical reduction models imply that arithmetic does not apply to

ordinary macroscopic objects?, British Journal for the Philosophy of Science, 50, pp. 49–64.
GHIRARDI, G., GRASSI, R. & BENATTI, F. (1995) Describing the macroscopic world: closing the circle within

the dynamic reduction program, Foundations of Physics, 25, pp. 5–38.
GHIRARDI, G., RIMINI, A. & WEBER, T. (1986) Unified dynamics for microscopic and macroscopic systems,

Physical Review, 34D, pp. 470–491.
KYBURG, H. (1961) Probability and the Logic of Rational Belief (Middletown, CT, Wesleyan University Press).
LEWIS, P.J. (1997) Quantum mechanics, orthogonality, and counting, British Journal for the Philosophy of

Science, 48, pp. 313–328.
NEUMANN, J. VON (1955) Mathematical Foundations of Quantum Mechanics (Princeton, NJ, Princeton Univer-

sity Press 1955).
SAINSBURY, R.M. (1995) Paradoxes, 2nd edn (Cambridge, Cambridge University Press).
SAKURAI, J.J. (1994) Modern Quantum Mechanics (Reading, MA, Addison-Wesley).



REALIST COLLAPSE INTERPRETATIONS 57

Note on contributor

Roman Frigg is a PhD student in the Department of Philosophy, Logic and Scientific Method at the London
School of Economics. He is currently completing his dissertation entitled “Re-presenting Scientific Represen-
tation”. Further interests include the philosophy of quantum mechanics and statistical physics. Correspondence:
CPNSS, Lakatos Building, London School of Economics, Houghton Street, London WC2A 2AE, UK.
E-mail: r.p.frigg@lse.ac.uk




