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ABSTRACT

On an influential account, chaos is explained in terms of random behaviour; and

random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai

entropy (KSE). Though intuitively plausible, the association of the KSE with random

behaviour needs justification since the definition of the KSE does not make reference to

any notion that is connected to randomness. I provide this justification for the case of

Hamiltonian systems by proving that the KSE is equivalent to a generalized version of

Shannon’s communication-theoretic entropy under certain plausible assumptions. I

then discuss consequences of this equivalence for randomness in chaotic dynamical

systems.
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1 Introduction

For many years, chaos theory has been a hotly debated topic and its methods

have been used to model a great variety of different situations. However, there
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is still controversy over the proper characterization of chaotic behaviour.

Numerous criteria and indicators for the onset of chaos have been suggested,

but none of these has gained the status of a ‘canonical definition’. Intuitively,

chaos has two faces: random behaviour and sensitive dependence on initial

conditions. Accordingly, the great majority of proposals for characterizing

chaos fall into one of the following two groups. The first group focuses on the

seemingly random, stochastic, unpredictable or haphazard time evolution

of chaotic systems and consequently tries to flesh out chaos in terms of

randomness. The second group focuses on sensitive dependence on initial

conditions. This leads to a study of the properties of trajectories in phase

space, in particular their exponential instability: a slight variation in

initial conditions produces significant changes in the long-term behaviour

of trajectories.

This paper is concerned with the first group of proposals. The problem with

this type of suggestion is that to characterize a system’s behaviour as random

or stochastic is not very illuminating, since these notions are as much in need

of analysis as chaos itself. What does it mean to say that a dynamical system

exhibits random behaviour?

Common physical (as well as philosophical) wisdom has it that ergodic

theory fits the bill. More specifically, the claim is that the ergodic hierarchy

provides a set of concepts which allows for an adequate characterization of

random behaviour (see, e.g., Lichtenberg & Liebermann [1992], pp. 302–12;

Ott [1993], pp. 261–2; Reichl [1992], pp. 47–53; Schuster [1988], pp. 203–7;

Tabor [1989], pp. 167–74). A discussion of the entire hierarchy is beyond the

scope of this paper, and for the present purpose only one of its notions is of

importance—the Kolomogorov-Sinai Entropy (KSE, for short). This notion

is crucial because it is generally assumed that the move from zero to positive

KSE marks the transition from regular to chaotic behaviour. More precisely,

the claim is that having positive KSE is a sufficient condition for chaos

(Belot & Earman [1997], p. 155).

Although, at first glance, this might seem plausible, a closer look at the

definition of the KSE casts doubt on the legitimacy of its use as a criterion

for the presence of chaos. The definition is phrased in terms of the measure of

subsets of the phase space and their time evolution and does not make

reference to any notion that is connected to randomness. How can such a

notion be an indicator for random behaviour?

Three suggestions have been made as to how to bridge this gap. First,

connect the KSE to sensitive dependence on initial conditions (and thereby

de facto reduce it to the second group of proposals); second, take algorithmic

complexity to be a measure for randomness and relate the KSE to this notion,

and; third, establish a link between the KSE and the information-theoretic

notion of entropy. Among these options the third is the most widely used; the
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notion of information is almost habitually invoked when the interpretation of

the KSE as a measure for random behaviour is discussed. Ironically, despite its

frequent use and its undoubted attractiveness, it is the only one of these three

proposals that has no theoretical grounding. In the first case, Pessin’s theorem

establishes a neat connection between the Liapunov exponents measuring the

divergence of nearby trajectories and the KSE. (Roughly speaking, the the-

orem says that the KSE equals the sum over the positive Liapunov exponents.)

In the second case, Brudno’s theorem can be invoked, which basically says

that if the phase space satisfies certain (unproblematic) conditions then the

KSE is equal to the algorithmic complexity of almost all trajectories.

Surprisingly, there is no theorem which connects the KSE to the information-

theoretic notion of entropy in roughly the same way in which Pessin’s and

Brudno’s theorems link the KSE with Liapunov exponents and algorithmic

complexity, respectively. Mathematically-minded authors either do not discuss

the relationship between the KSE and communication theory at all (Arnold &

Avez [1968], pp. 15–51; Cornfeld et al. [1982], pp. 246–57; Rudolph [1990],

pp. 71–104; Cornfeld & Sinai [1980]); or they pay mere lip service to commu-

nication theory in that they attach the term ‘information’ to purely topological

notions without elucidating how phase space topologies relate to the conceptual

framework of information theory (Eckmann & Ruelle [1985], pp. 637–46;

Keller [1998], pp. 43–50; Nadkarni [1998], pp. 63–4). Others seem to be aware

of the fact that there is a gap to bridge but then content themselves with some

rather loose and hand-waving remarks, mainly based on lax analogies

(Billingsley [1965], 51–94; Ma~nné [1983], pp. 207–304; Parry [1981], pp. 52–73;

Petersen [1983], pp. 227–48).1 Nowhere in the literature could I find a clear

argument connecting entropy in communication theory to its namesake in

dynamical systems theory, despite the frequent mention of Shannon.

This raises the question of whether the interpretation of the KSE in terms of

information can be vindicated. Is there a way to bridge the gap between the

topological and the information-theoretic understanding of entropy? The aim of

this paper is to provide such an argument for the case of Hamiltonian systems.

More specifically, I prove that the KSE is equivalent to the information-

theoretic notion of entropy given certain plausible assumptions. But before

I embark on this project it seems worthwhile to appreciate what the problems

are. First, communication theory and dynamical systems theory work with

different conceptual frameworks. The former deals with a finite set of discrete

messages and their combinations, while the latter considers a continuous

measurable phase space on which an automorphism (a function mapping

the phase space onto itself) is defined. Prima facie these two setups bear little,

1 Petersen ([1983], pp. 229–34) discusses the problem in some detail but his arguments are of no help

since the expression he gives for the entropy of a source is not correct.
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if any, resemblance to each other. Second, the mathematical theories are

entirely different. The KSE of an automorphism � is defined as H� ¼
sup� limk!1ð1=kÞHð� _ �� _ � � � _ �k�1�Þ and there is not a single formula

in communication theory that bears any similarity to this expression. For this

reason, it is not possible to resort to formal analogy and consider information

and topological measures as two interpretations of one calculus in the same

way that classical probabilities and actual frequencies are interpretations of

probability calculus, for instance. For these reasons, the question of how the

concepts of entropy in these two disciplines fit together is not a trivial issue.

Critics might now ask, even if we grant that there is a problem, why we

should bother with it. There are two ways to connect the KSE to unpredict-

ability and randomness, why do we need a third one? Why not just stick with

either Pessin’s or Brudno’s theorem? The answer to this question is that the

different associations bring out different aspects of randomness that are all

captured in the KSE. The connection of the KSE with communication theory

adds to our understanding of the KSE because it brings out some aspects of

the notion of randomness associated with the KSE that are particularly close

to our physical intuitions and which are not made explicit by either Pessin’s or

Brudno’s theorem. More to the point, based on communication-theoretic

notions, one can make statements about the time span of unpredictability

or the role that knowledge of the past history plays in making forecasts.

This gives rise to the following plan. After a short introduction into dyna-

mical systems (Section 2), I present the concept of entropy in communication

theory (Section 3) and discuss in what sense it can be considered a measure of

random or unpredictable behaviour. Although I thereby follow the spirit of

Shannon & Weaver ([1948]), the formal presentation differs significantly from

theirs. I present a version of communication theory which is in several respects

a generalization of the original theory. In particular, I consider messages

whose probability of appearance is a function of the entire past history of

the system, while Shannon and Weaver only consider Markov processes. The

purpose of this is to facilitate the establishment of the connection to entropy in

dynamical systems. This is what I do in Section 4, where I prove an equiva-

lence theorem for the KSE and the notion of entropy used in communication

theory, this under the assumption that the measure defined on the phase space

can be interpreted probabilistically. This establishes the sought-after connec-

tion between the two notions. On the basis of this result, I give a precise

characterization of the kind of randomness we find in dynamical systems with

positive KSE. I then compare this account to the notions of randomness we

get from Pessin’s or Brudno’s theorems (Section 5). In the last section, I point

out that the main result of this paper has a bearing on the relation between

product and process randomness, and I argue that it casts doubt on the recent

claim that chaotic systems exhibit product but not process randomness.
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2 Elements of dynamical systems theory

An abstract dynamical system is a triple M ¼ ðM, m, �tÞ where (M, m) is a

measure space equipped with a one-parameter group �t of automorphisms of

(M, m), �t depending measurably on t (Arnold & Avez [1968], p. 7).

It is common to assume that M has manifold structure but this is not

necessary; in what follows it can be any measurable space. M will be referred

to as a ‘phase space’ of the system. Sometimes this term is reserved for sym-

plectic manifolds but I will use it in a more general sense and refer to every

measurable space on which an automorphism is defined as a ‘phase space’.

The parameter t plays the role of time. As can easily be seen, the set of all

�t has group structure. In the sequel, I will use the following notational con-

ventions: �tðxÞ is the point in phase space onto which �t maps the ‘initial

condition’ x after time t has elapsed, and �tðAÞ is the image of the subset A �
M under �t. I write �ti!tj ðAÞ to denote the image of A under the time devel-

opment starting at ti and ending at tj.

Furthermore I assume, without loss of generality, that M is normalized:

m(M)¼ 1. The last clause in the definition (�t depending measurably on t)

simply means that �tA \ B is measurable for all t, and for all A, B2M, i.e. that

mð�tA \ BÞ is a measurable function of t. In what follows, ‘almost everywhere’

means ‘everywhere except, perhaps, on a set of measure zero’.

As a simple example of a dynamical system in this sense, think of the unit

interval endowed with �t: the shift x ! xþ t mod 1 where m is the usual

Euclidean length of an interval.

The above definition is extremely general and in what follows I make the

following restrictions:

(1) The transformation �t is measure-preserving: mð�tAÞ ¼ mðAÞ for all sub-

sets A of M and all times t. That is, in the sequel I restrict my attention to

Hamiltonian systems. Some may feel a certain unease about this limitation

because they tend to think about chaos in terms of attractors, which cannot

occur in Hamiltonian systems. Those may become reconciled by the following

two observations. First, important paradigm cases of chaotic systems are

Hamiltonian systems, for instance the three-body problem, the Hénon-Heiles

system, the autonomous double pendulum, and more generally KAM-type

systems. Second, apart from attractors, which are ruled out by the conservation

of phase volume, Hamiltonian systems can exhibit all features that are

commonly taken to be distinctive of chaotic systems: Positive Liapunov

exponents, sensitive dependence on initial condition, unpredictable time

evolution, continuous power spectra, decaying autocorrelations, aperiodic

orbits, the presence of a stretching and folding mechanism in phase space,

and last but not least positive KSE.
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(2) Nothing has been said so far about whether the parameter t is continuous

or discrete. To keep things simple I restrict my attention to the discrete case;

that is, I only consider systems in which time evolves in finite steps: t1, t2,. . ..

Moreover, it is often the case that the �ti , i ¼ 1,2, . . . are generated by an

iterative application of one single automorphism � (standard examples like

the cat map or the baker’s transformation belong to this class). In this case we

have �ti ¼ �i and �ti!tj ðAÞ ¼ �j�iðAÞ. Furthermore, I drop the subscript and

just write (M, m, �) for a dynamical system of this kind.

In what follows, partitions will play an important role. Roughly, a partition

of M is a division of M into finitely many measurable sets. More precisely, a

partition � ¼ f�iji ¼ 1, . . . ,ng is a collection of non-empty, non-intersecting

measurable sets that together cover M: the �i are pairwise disjoint, �i \ �j ¼ ;
for all i 6¼ j; and together the �i cover M up to measure zero,

mðM �
Sn

i¼1 �iÞ ¼ 0. Theai are called ‘atoms’ or ‘cells’ of the partition. Further-

more, notice that ifa is a partition ofM then its picture under the automorphism

�t is also a partition. That is, if � ¼ f�iji ¼ 1, . . . ,ng is a partition of M then

�t� :¼ f�t�iji ¼ 1, . . . ,ng is as well.

Given two partitions � ¼ f�i j i ¼ 1, . . . ,ng and b ¼ fbjjj ¼ 1, . . . ,mg, their

least common refinement � _ b is defined as follows: � _ b ¼ f�i \ bjji ¼
1, . . . ,n; j ¼ 1, . . . ,mg. Sometimes � _ b is also called ‘sum of a and b’.

Figure 1 provides an example illustrating this.

We are now in a position to state the definition of the Kolmogorov-Sinai

entropy H� of an automorphism � (Arnold & Avez [1968], pp. 38–40):

H� :¼ sup
�

lim
k!1

ð1=kÞHð� _ �� _ � � � _ �k�1�Þ, ð1Þ

where the function on the right-hand side is the entropy of a partition (recall

that � _ �� _ � � � _ �k�1� is a partition as well) which is defined as follows:

HðbÞ :¼ �
Pm

i¼1 z½mðbiÞ�, zðxÞ ¼ x logðxÞ ifx40 and zðxÞ ¼ 0 ifx ¼ 0; and sup�

is the supremum over all possible finite partitions a of the phase space. (I shall

discuss this definition in detail later on.)

α1 α2

β1

β2 (αVβ)3

(αVβ)1

(αVβ)4

(αVβ)2

Figure 1. The sum of the partitions a and b
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3 Entropy in communication theory

Consider the following situation: we have a source S producing messages

which are communicated to a receiver R registering them (on a paper tape,

for instance).2 The messages may be of various types: sequences of letters,

numbers, words, or any other symbols we might think of. The only restriction

we impose is that the source uses discrete symbols and generates the message

symbol by symbol. The product of this process is a string of symbols, the

message, which can be of finite or infinite length.

More precisely, let S1, . . . ,Sn be the available symbols and let the process of

the composition of a message start at time t0. At that time, no symbol has been

produced bySand the tape ofR is blank. The first symbol is put out bySand sent

toR at t1, where it is registered; the second symbol is sent and registered at t2 (we

assume that t15t25t35 . . .), and so on. The production of one symbol by the

source (when it moves from ti to tiþ1) will be referred to as a ‘step’. As a result of

this, at tk the tape ofR contains a string of k symbols:St1
l1
St2
l2
. . .Stk

lk
, where all the

li range over 1, . . . ,n (i.e. the number of symbols available). The time-super-

scripts have been added to indicate the order of reception (Sl1 has been sent and

received at t1, and so on). For instance, assuming that our symbols are letters,

ht1et2 lt3 lt4ot5 means that the letter ‘h’ has been received at time t1, ‘e’ at t2,

and so on.

I now introduce in seven stages the notion of the entropy of a source S,

which will be designed such that it serves as a measure of the receiver’s average

uncertainty about what message the source produces next (that is, it is a

measure for unpredictability—I shall use ‘uncertainty’ and ‘unpredictability’

interchangeably in what follows). Thereby it also is a measure of the amount

of information received. I shall come to that below.

Stage 1: Tostartwith, considerasourcewhichhas just twosymbols (0and1,say)

it cansend.What is theamountofuncertaintyof thereceiveraboutwhatmessage

will crop up next? We answer this question by adopting the convention that the

amount of uncertainty of the receiver in this case equals one. This is a reasonable

choice: if we had just one symbol available, we would in fact know for sure what

the receiver would indicate whenever we switched it on; there is no uncertainty.

The simplest non-trivial situation is the one considered here, where two symbols

are available. In this case, we are not sure what the next message will be (we could

get either of the two messages), and it seems reasonable to say that the amount of

uncertainty in this case is one because there is one choice to be made.

Before continuing with the development of the theory, I would like to make

some remarks about information. It is one of the main insights of Shannon’s

Mathematical Theory of Communication that uncertainty is closely related to

2 In what follows I assume that the channel is noiseless and deterministic, which basically means

that there is a one-to-one correspondence between the input and the output messages.
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information. If we are sure about what message we will receive next, we do not

learn anything by actually receiving it. Therefore the amount of information

transmitted is zero. If, on the other hand, there are several possibilities (e.g. if

we do not know whether we will obtain 0 or 1), we do acquire information

when we receive either of the two. For those who find this a bit contrived,

consider Lewis Carroll’s remark in Through the Looking-Glass: ‘It is a very

inconvenient habit of kittens (Alice had once made the remark) that, whatever

you say to them, they always purr. ‘‘If they would only purr for ‘yes’ and mew

for ‘no,’ or any rule of that sort,’’ she had said, ‘‘so that one could keep up a

conversation! But how can you talk with a person if they always say the same

thing?’’ ’ ([1998], p. 238). In short, uncertainty about what comes next and the

transmission of information are two sides of the same coin.

For this reason, devising a measure of the amount of uncertainty about

future events and the quantity of information transmitted amounts to the

same. Consider again the previous example. What is the amount of informa-

tion transmitted when R has registered ‘1’ or ‘0’ on its tape? For the same

reasons outlined above, it is natural to say that the amount of information

transmitted is one (in technical jargon, we get one ‘binary digit’, or ‘bit’ for

short, of information). As a consequence, when, in what follows, we devise

entropy as a measure of the amount of uncertainty, it also is a measure of the

amount of information transmitted. However, the focus in the rest of the

paper will be on uncertainty, not on information, though I use information

jargon at times if this turns out to be convenient.

Two remarks about this concept of information should be made. First,

contrary to the concept of meaning, which applies to a single message (receiv-

ing ‘S1’, for instance, could mean, ‘I love you’, ‘I hate you’, ‘happy birthday’ or

what have you), information is not concerned with individual messages, but

only with the ensemble ofallmessagesa sourcecouldpossibly send. What makes a

single message informative is not its meaning but the fact that it is selected from a

set of possible messages. The more (different) messages the source could in

principle send, the higher the information content of the one we actually get.

Second, from what has been said so far, it is obvious that we are dealing here with

a rather idiosyncratic concept of information which has little to do with the

various senses the term ‘information’ has in ordinary discourse, such as knowl-

edge or propositional content. Information in these senses has semantic features

such as truth-values, something the communication-theoretic concept lacks.

This has led many to criticize this concept as misconceived. Be this as it may, my

focus in this paper is on uncertainty and not information, and for this reason I

will not dwell on this issue here.

Stage 2: How do the ideas introduced in Stage 1 generalize to a source which

can emit n different symbols? This question is best answered by looking at the
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restrictions we want to impose on a measure of the amount of uncertainty.

(a) It must be a monotonically increasing function of n; the more possibilities

there are, the greater our uncertainty about what comes next. (b) Additivity:

When we add two sources of the same type, we want the amount of uncer-

tainty to double. Informally, let I stand for uncertainty (or information) per

step. Then we require I(source 1þ source 2)¼ I(source 1)þ I(source 2) (see

Shannon & Weaver ([1949], p. 32), for a justification of this assumption).

(c) Finally, we should have I¼ 1 in the case of only two possibilities (see

Stage 1). The only function which satisfies these criteria is the logarithm to

the base 2. Hence, we have I¼ log(n), where ‘Log’ stands for the logarithm to

the base 2.

Stage 3: So far we have implicitly assumed that all symbols occur with equal

probability at any step k, i.e. that all Si occur with probabilitypk ¼ 1=nat stepk

(since the probabilitiespk do not actually depend on stepk, I drop the subscriptk

in what follows). This is a perfectly good assumption in certain cases but it

does not hold true generally. If, for instance, the symbols are letters of the

alphabet, the probability that the next letter the sender emits is an ‘a’ is

much higher than that for an ‘x’, since ‘a’ occurs much more often in English

than ‘x’. So we need a generalization of I to this case. LetpðS1Þ, . . . , pðSnÞ (where

pðS1Þ þ � � � þ pðSnÞ ¼ 1Þ be the respective probabilities that S1, . . . , Sn occur.

Shannon showed that a natural generalization of the above notion is the

following (Shannon & Weaver [1949], pp. 48–53):

Hstep :¼ �
Xn
i¼1

z½pðSiÞ�, ð2Þ

where zðxÞ ¼ x logðxÞ if x40 and zðxÞ ¼ 0 if x ¼ 0. Hstep is the measure of the

uncertainty about what symbol will crop up at the next step; the greaterHstep the

less certain we are about the outcome. The use of the letter ‘H’ instead of ‘I’ is

motivated by the fact that Eqn (2) has the same structure as the expression for the

entropy in statistical mechanics, and for this same reason we also refer to it as

‘entropy’.Hstep is a natural generalization of I for the following reasons. First, if

all events are equally probable (pðSiÞ ¼ 1=n for all i ¼ 1, . . . , n), Hstep coincides

with the above notion, that is Hstep ¼ logðnÞ, as some simple algebra immedi-

ately reveals. Second, it is continuous in the pðSiÞ. Third, it has the ‘right’

behaviour: (a) Any change toward equalization of the probabilities

pðS1Þ, . . . , pðSnÞ increases H. In particular, Hstep is maximal if all events are

equally probable. (b)Hstep ¼ 0 if all pðSiÞbut one equal zero, i.e. if there is in fact

no choice (Ibid., p. 51).

Stage 4: So far nothing has been said about what the pðSiÞare and on what they

depend. In many cases the choice of a symbol at some particular time tkþ1

does not depend on previous choices. However, for a general source, the
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probability that a particular symbol is chosen may depend on what has been

chosen beforehand. For example, if the source is producing English prose,

there are a number of limitations due to the orthography and syntax of the

language. The probability of receiving a ‘u’, for instance, will rise dramatically

each time a ‘q’ comes through, and it will be almost zero after an ‘x’. In short,

successive symbols may not be chosen independently and their probabilities

may depend on preceding letters. In the simplest case, a so-called Markov

process, a choice depends only on the preceding letter and not on the ones

before that. However, the choice may in general depend on the entire previous

history of the process; that is, the choice of a symbol at tkþ1 may depend on

St1
l1
St2
l2
. . .Stk

lk
. It is natural to account for this by using conditional probabilities:

the probability of receiving Si at time tkþ1 is pðStkþ1

i =St1
l1
St2
l2
. . .Stk

lk
Þ. Since these

probabilities may vary with k, the entropy may have a different value at every

step. To make this explicit, I replace the subscript ‘step’ in Eqn (2) by ‘k’ to

emphasise that we are considering the entropy at the kth step of the process. The

expression for the entropy then reads:

HkðSt1
l1
St2
l2
. . .Stk

lk
Þ :¼ �

Xn
i¼1

z½pðStkþ1

i =St1
l1
St2
l2
. . .Stk

lk
Þ�: ð3Þ

This is a measure for the uncertainty about what symbol will show up at time

tkþ1 given that the previous history of the process (recorded on R’s tape) is

St1
l1
St2
l2
. . .Stk

lk
.

Stage 5: Now we generalize our question slightly. Instead of asking ‘What is

the uncertainty about the (kþ 1)th symbol given that the message produced so

far is St1
l1
St2
l2
. . .Stk

lk
?’ (to which Eqn (3) is an answer), we now ask ‘What is the

uncertainty about the (kþ 1)th symbol whatever message has been produced so

far?’. Or in other words: What is the uncertainty at tkþ1 if we do not presuppose

that the system has a particular previous history, namely St1
l1
St2
l2
. . .Stk

lk
? The

answer seems clear: take the average of allHkðSt1
l1
St2
l2
. . .Stk

lk
Þ and, to do justice to

the fact that not all histories are equally likely, weight each term with the

probability of the respective history:

�HHk :¼
Xn

l1;...;lk¼1

pðSt1
l1
St2
l2
. . .Stk

lk
ÞHkðSt1

l1
St2
l2
. . .Stk

lk
Þ, ð4Þ

where

pðSt1
l1
St2
l2
. . .Stk

lk
Þ :¼ pðSt1

l1
ÞpðSt2

l2
=St1

l1
Þ . . . pðStk

lk
=St1

l1
� � �Stk�1

lk�1
Þ: ð5Þ

Stage 6: On the basis of this result we can now define the entropy ~HHk of the

entire process of the composition of a message of length k. Since no step is
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privileged over the others, this can be effected by simply taking the average

of the entropy at every step of the process:

~HHk :¼ 1

k

Xk�1

j¼0

�HHj ð6Þ

Stage 7: Now we can say that the entropy of the source itself, HS, is the average

of the uncertainty at every step if we let the process go on forever:

HS :¼ lim
k!1

~HHk ð7Þ

This is the entropy of the source. It is a measure for the average uncertainty

over the entire process or, to put it differently, the average amount of

information which the source conveys with every symbol the receiver prints.

I will refer to this notion of entropy as ‘communication-theoretic entropy’, or

CTE for short.3

Fromatechnicalpointofview,thedevelopmentof thetheory isnowcomplete.

But what is its conceptual import? What does it mean for a source to have a

positive CTE? And in what sense is a positive CTE a measure for random

behaviour? In the remainder of this section, I shall discuss these questions.

Let us start by having a look at the probabilities involved. When probabil-

ities are introduced into the theory, they are assumed to be given; there is no

element in the theory that determines what their values are. For this reason

one could also say that the set of possible messages S1, . . . ,Sn together with the

conditional probabilities of occurrence pðStkþ1

i =St1
l1
St2
l2
. . .Stk

lk
Þ, i ¼ 1, . . . , n

actually defines the source. Characteristically, these probabilities are past rela-

tive frequencies, and it is assumed that these relative frequencies will persist.

However, this ‘natural order’ of proceeding can, in a certain sense, be

reversed: the entropy can be used to characterize the probabilities involved

even if they are not explicitly known (leaving aside the question of how we get

to know the entropy without knowing the probabilities). The point is the

following. The notion of entropy has been set up in such a way that it is a

measure for the average uncertainty per symbol over the entire process. For

this reason, HS40 expresses the fact that, on average, at every step there is

some uncertainty about what the next symbol printed by the receiver will be.

3 Note that if we assume that all the probabilities are independent (this is the case for Bernoulli

processes, for instance), we have HS ¼ Hstep. This is easy to see: for independent events, Eqn (4)

becomes

�HHk :¼ �
Xn

l1 ;...;lk¼1

pðSl1 ÞpðSl2 Þ . . . pðSlk Þ
Xn
i¼1

z½pðSiÞ�: ð8Þ

Now realize that the two sums separate and that the first one is just a sum over the prob-
abilities of all strings of length k. For this reason we have:

Pn
l1 ; ...; lk¼1 pðSl1 ÞpðSl2 Þ . . . pðSlk Þ ¼ 1.

Hence �HHkðSÞ ¼ �
Pn

i¼1 z½pðSiÞ� and therefore HS ¼ �
Pn

i¼1 z½pðSiÞ�.
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More precisely, whatever the past history of the system and whatever our

knowledge about it (we may know it all), we are not sure as to what the next

symbol that emerges will be. And this characteristic persists forever, there exists

no ‘cut-off time’ tc in the process from which on the past history of the system

allows us to predict with certainty what its future will be.4 This follows imme-

diately from the definition of the CTE: HS ¼ limk!1ð1=kÞ
Pk�1

j¼0
�HHj ¼

limk!1ð �HH0=k þ � � � þ �HHk�1=kÞ is greater than zero only if there do not cease

to be �HHk greater than zero. Now recall that �HHk is a measure for the uncertainty

about what the message printed at timek þ 1 will be. Hence, if there do not cease

to be �HHk40 as time goes on, there will always be times at which we are not sure

about what is going to happen. As a consequence, we cannot predict with

certainty what the future will be.5 In terms of probabilities, this means that

as the process goes on we never reach a stage where pðStkþ1

i =St1
l1
St2
l2
. . .Stk

lk
Þ equals

one for some particular symbol and zero for all the others.

Summing up, we can characterize a system with positive entropy as one in

which the past history never conveys certainty onto what will happen at the

next step and more generally in the future. Or to phrase it differently, even

given the entire past history we are not able to predict with certainty what will

happen in the future. It is in this sense that a process with positive entropy is

random, and the magnitude of the entropy is a measure of how random it is.

If, on the other hand, HS equals zero, then, on average, there is no uncer-

tainty and we can predict what the future will look like. There is a subtlety,

however. Zero entropy does not imply that the process is deterministic (by which

I here simply mean that, given the state of a process at time tk, there is exactly one

state in which it can be at tkþ1). It is true that for a deterministic processHS ¼ 0

holds. But the converse is false: HS ¼ 0 does not imply that the process is

deterministic: it just means that on average there is no freedom of choice.

This does not preclude that the process is indeterministic at some particular

instants of time.

4. Entropy in dynamical systems theory

To repeat, the KSE of an automorphism is defined as H� ¼
sup� limk!1ð1=kÞHð� _ �� _ � � � _ �k�1�Þ and it is commonly used as a

measure for the unpredictability of the dynamics. But as I explained in the

4 I should note that there is a subtle difference between ‘with probability equal to one’ and

‘certainty’. The latter implies the former but not vice versa. However, since this subtlety does

not play any role in what follows, I shall use these two expressions interchangeably.
5 This does not imply that there cannot be an isolated instant of time for which this is possible. As the

above formula shows, HS40 is compatible with there being, from time to time, some particular
�HHk that equals zero. The point is just that as k, i.e. time, goes on we never reach a point after which

all �HHk equal zero; and this is all we need to render the future unpredictable.
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introduction, it is prima facie not clear whether this is legitimate or not. In this

section I show that it is, by proving, under plausible assumptions, that the KSE

is equivalent to the CTE.

Wanting to prove this equivalence we face the following problem: the mes-

sages we have been dealing with so far are discrete entities, whereas the phase

space of a dynamical system is continuous. These do not seem to go together.

This mismatch can be removed if we coarse-grain the phase space, i.e. if we work

with a partition instead of the ‘whole’ phase space. Then it is no longer difficult

to associate a dynamical system M with an information source of the type

discussed above. This association is achieved as follows. Let� ¼ f�1, . . . ,�ngbe

a partition of the phase space and assume that the state of the system at t0 is x

(more needs to be said about the choice of a partition; I come back to this issue

below at stage 8). Then trace the trajectory�ti ðxÞ ofx and take down on a paper

tape at each time ti,i ¼ 1,2, . . ., in what cell�j , j ¼ 1, . . . , nof the partition�ti ðxÞ
is. That is, write down �t1

j if �t1ðxÞ 2 �j at time t1 and so on. If we follow

this procedure up to time tk this generates the string �t1
l1
�t2
l2
� � ��tk

lk
, which is

structurally identical to St1
l1
St2
l2
� � �Stk

lk
. This is illustrated in Figure 2.

Now we need to find something in M corresponding to the probability

pðSiÞ of choosing a particular symbolSi. This is not too hard to get. By assump-

tion, there is a normalized measure m onM (that is m(M)¼ 1) and it is a straight-

forward move to interpret this measure as a probability measure. More

precisely, let m reflect our ignorance about the real state of the system, and

interpret m(ai) as the probability of finding the system’s state in �i. Note, how-

ever, that although this move is quite natural, it is not necessary to interpret m as

the probability of finding the system’s state in a particular cell of the partition.

Not all measures reflect our ignorance about the system’s real state; it could also

simply be the spatial volume. However, this interpretation is perfectly

possible, and it allows us to connect what happens in dynamical systems to

communication theory as outlined above, and that is all we need for the

time being.

Figure 2. The generation of the string �t1
8 �

t2
1 �

t3
2 �

t4
9 �

t5
16�

t6
18�

t7
6 �

t8
10
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Then, the following associations are made to connect dynamical systems to

communication theory:

(a) The atoms �i of the partition correspond to the symbols (messages)Si of the

source.

(b) The measure of an atom mð�iÞ, interpreted as the probability of finding

the system’s state in atom �i, corresponds to the probability pðSiÞ of obtaining

symbol Si.

(c) The automorphism �t corresponds to the sourceS, since they both do the job

of generating the strings �t1
l1
�t2
l2
. . .�tk

lk
and St1

l1
St2
l2
. . .Stk

lk
respectively.

With these associations at hand, it is now possible to carry over the notions

introduced in the last section to the present context.

Stage 1: To begin with, consider a partition consisting of two atoms,

� ¼ f�1, �2g, and assume that the state of the system at t0 is x. Then trace

the trajectory �ti ðxÞ and take down at each time step in what cell �j, j ¼ 1,2,

�ti ðxÞ is. This generates a string of exactly the same sort as the one we obtain

from a source which can send only two symbols.

As in the case of the source, we are generally not sure what cell the

system’s state will be in next. Due to restrictions on the precision of the

specification of initial conditions, we normally cannot know precisely what

the system’s initial state is, and this uncertainty is then propagated, or even

amplified, by the dynamics of the system as time evolves. Therefore we gain

information, i.e. remove uncertainty, when we learn that the system’s state is

in �1 rather than�2, say. Adopting the same convention as in the case of sources,

we can say that the amount of uncertainty of the observer regarding what cell

the system’s state will be in at the next step is one bit.

Stage 2: Replacing this partition by one consisting of more than two atoms is

the analogue to the transition from a source with two symbols to one with any

number of symbols. The considerations concerning the general properties of

information then carry over one-to-one. The more possibilities we have (i.e.

the more cells the partition consists of), the greater the uncertainty about what

happens next becomes. Combining two systems of the same sort should result

in the doubling of the amount of uncertainty; and in the case of a partition

with only two cells, the uncertainty must be unity in order to be consistent with

stage 1. So, as in the case of the source, we set I ¼ logðnÞ.

Stage 3: By assumption, the measure mð�jÞ is interpreted as the probability that

at the next step the system will be in cell �j; that is, we have pð�jÞ ¼ mð�jÞ. This

allows us to carry over Eqn (2) to the present context. We immediately obtain

Hstep ¼ �
Pn

i¼1 z½mð�iÞ�, which is commonly called the ‘entropy of the partition

a’. To be in accord with the notation commonly used in the literature, I write

‘H(a)’ instead of ‘Hstep’:
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Hð�Þ :¼ �
Xn
i¼1

z½mð�iÞ�: ð9Þ

Stage 4: In general, in dynamical systems also, the previous history affects

future probabilities. Therefore Eqn (3) carries over to the present context:

Hkð�; �t1
l1
�t2
l2
. . .�tk

lk
Þ :¼ �

Xn
i¼1

z½pð�tkþ1

i =�t1
l1
�t2
l2
. . .�tk

lk
Þ�: ð10Þ

Now we have to express the probabilities occurring in this expression in terms

of m. To this end, first spell out the conditional probability in terms of

unconditional ones:

pð�tkþ1

i =�t1
l1
�t2
l2
. . .�tk

lk
Þ ¼ pð�tkþ1

i �t1
l1
�t2
l2
. . .�tk

lk
Þ=pð�t1

l1
�t2
l2
. . .�tk

lk
Þ ð11Þ

¼ pð�t1
l1
�t2
l2
. . .�tk

lk
�tkþ1

i Þ=pð�t1
l1
�t2
l2
. . .�tk

lk
Þ: ð12Þ

The latter equality follows immediately from the definition of a string.

Note that for any two instants of time ti and tj (where ti5tj) and any two

subsets A and B of M the following holds:

pðAtiBtj Þ ¼ m½�ti!tj ðAÞ \ B� ð13Þ

The validity of this equation becomes transparent in Figure 3.

The generalization of this equality to any number of sets and instants of

time is straightforward. Applying this generalisation to the above expressions

yields:

pð�t1
l1
�t2
l2
. . .�tk

lk
Þ ¼ mð�lk \ �tk�1!tk�lk�1

\ � � � \ �t1!tk�l1Þ ð14Þ
and

pð�t1
l1
�t2
l2
. . .�tk

lk
�tkþ1

i Þ ¼ mð�i \ �tk!tkþ1
�lk \ � � � \ �t1!tkþ1

�l1Þ: ð15Þ

Hence (10) becomes:

Hkð�;�t1
l1
�t2
l2
. . .�tk

lk
Þ :¼�

Xn
i¼1

z

�
mð�i \�tk!tkþ1

�lk \ � � � \�t1!tkþ1
�l1Þ

mð�lk \�tk�1!tk�lk�1
\ � � � \�t1!tk�l1Þ

�
: ð16Þ

U

Figure 3. The probability of AtiBtj equals m½�ti!tj ðAÞ \ B�

&
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Stage 5: Similarly, Eqn (4) carries over to dynamical systems easily:

�HHkð�Þ :¼
Xn

l1,...,lk¼1

pð�t1
l1
�t2
l2
. . .�tk

lk
ÞHkð�t1

l1
�t2
l2
. . .�tk

lk
Þ; ð17Þ

which is the entropy of the kth step relative to the partition a. Inserting

probabilities in terms of the measures, we obtain

�HHkð�Þ :¼
Xn

l1; ...; lk¼1

mð�lk \ �tk�1!tk�lk�1
\ � � � \ �t1!tk�l1Þ

Xn
i¼1

z

�
mð�i \ �tk!tkþ1

�lk \ � � � \ �t1!tkþ1
�l1Þ

mð�lk \ �tk�1!tk�lk�1
\ � � � \ �t1!tk�l1Þ

�
: ð18Þ

Stage 6: The entropy of the process of the composition of a string of length

k is:

~HHkð�Þ :¼
1

k

Xk�1

j¼0

�HHjð�Þ: ð19Þ

Stage 7: On the basis of this, we define the entropy of an automorphism as

follows:

H�t
ð�Þ :¼ lim

k!1
~HHkð�Þ ð20Þ

This is the entropy of the automorphism �t with respect to the partition a.

Stage 8: At the beginning of this section I mentioned in passing that more

needs to be said about the choice of a partition. The reason for this is that there

is an important disanalogy between a source and a dynamical system. In the

case of a Source S, the set of possible messages (S1, . . . ,Sn) is a part of the

definition of the source, and hence it is no longer an issue later on. This is not so

with the partition a, which is no constitutive part of the dynamical system M.

Rather, it has been ‘imposed’ on the system.

This is a problem because the values we obtain for H�t
ð�Þ essentially depend

on the choice of the partition a. If we choose a conveniently enough (which we

always can, no restrictions having been imposed on a), there will be no uncer-

tainty left, whatever the properties of �t (this can be achieved, for instance, by

choosing the trivial partition, i.e. the partition whose only atom is M itself).

Hence, prima facie H�t
ð�Þ tells us more about our choice of a than about the

properties of the automorphism �t.

This may pose no problem if the partition a is what we are ultimately

interested in. But for the most part we are interested in the automorphism

�t itself rather than the partition, which is merely an auxiliary device. For this

reason we have to eliminate the dependence on a and get to a notion of entropy

which is no longer dependent on any particular partition.

426 Roman Frigg



This can be achieved by defining the entropy of the automorphism as the

supremum of H�t
ð�Þ over all finite measurable partitions (Arnold & Avez

[1968], p. 40):

H�t
¼ sup

�
H�t

ð�Þ: ð21Þ

The choice of the supremum is motivated by the following considerations.

From the point of view of the dynamical system, there is no privileged parti-

tion—one is just as good as any other. Therefore it is interesting to discuss how

H�t
ð�Þ behaves as a function of a, when a ranges over all finite measurable

partitions. As I just observed, one can always find a partition such that

H�t
ð�Þ ¼ 0; and from the definition of H�t

ð�Þ it follows that it cannot be

negative. Hence zero is an infimum of H�t
ð�Þ. However, this is not a very

informative result if we want to know something about the automorphism

�t, since this holds true regardless of what �t is. So what about the supremum?

This is an interesting question because the supremum really depends on �t.

Some automorphisms are such that we simply cannot find a partition with

respect to which there is much uncertainty, while with others things get as

unpredictable as we may want. For this reason the supremum ofH�t
ð�Þ, unlike

the infimum, tells us a great deal about the automorphism. More specifically, it

informs us about the maximal magnitude of uncertainty we can encounter in a

system governed by �t.

But there is a problem: the expression in Eqn (21) does not bear any

resemblance whatsoever to the standard definition of the KSE. I now solve

this problem by proving that H�t
, as defined above, is equivalent to the stan-

dard definition.

To this end, I first have to introduce a technical device, the so-called con-

ditional entropy. Let a and b be two partitions. The conditional entropy of a
with respect to b is defined as follows (Arnold & Avez [1968], p. 37):

Hð�=bÞ :¼
Xm
j¼1

mðbjÞ
Xn
i¼1

z

�
mð�i \ bjÞ
mðbjÞ

�
: ð22Þ

Then note that the standard definition of the KSE assumes that the flow is

generated by the iterative application of the same automorphism �. So we

have �ti ¼ �i and�ti!tj ðAÞ ¼ �j�iðAÞ (see Section2). Given this, one can prove

Theorem 1 (the proof can be found in the Appendix):

�HHkð�Þ ¼ Hð�=�� _ �2� _ � � � _ �k�Þ: ð23Þ

Then the entropy of the process as given in Eqn (19) reads:

~HHkð�Þ ¼
1

k

�
Hð�Þ þHð�=��Þ þ � � � þHð�=�� _ � � � _ �k�1�Þ

�
: ð24Þ
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This can be facilitated considerably by using Theorem 2 (the proof can be

found in the Appendix):

Hð� _ �� _ � � � _ �k�Þ ¼ Hð�Þ þHð�=��Þ þ � � � þHð�=�� _ � � � _ �k�Þ:
ð25Þ

Hence,

~HHkð�Þ ¼
1

k
Hð� _ �� _ � � � _ �k�1�Þ: ð26Þ

Inserting Eqn (26) first into (20) and then (21) we obtain

H� ¼ sup
�

lim
k!1

ð1=kÞHð� _ �� _ � � � _ �k�1�Þ ð27Þ

and this is the definition of the entropy of an automorphism which we were

aiming for. Gathering the pieces together, we have proven the

Equivalence Theorem:

H� ¼ sup
�

lim
k!1

ð1=kÞHð� _ �� _ � � � _ �k�1�Þ

¼ sup
�

lim
k!1

�1

k

Xk�1

j¼0

Xn
l1,...,lk¼1

pð�t1
l1
�t2
l2
. . .�tk

lk
Þ

Xn
i¼1

z½pð�tkþ1

i =�t1
l1
�t2
l2
. . .�tk

lk
Þ�: ð28Þ

Since, by construction, the last term in this equation is equivalent to the CTE,

the sought-after connection between the notion of entropy in dynamical sys-

tem theory and in information theory is established.

As a consequence, everything that was said at the end of Section 3 about the

unpredictable behaviour of a source can be carried over to dynamical systems

one-to-one. However, a proviso with regard to the choice of a partition must

be made. The exact analogue of the CTE is H�ð�Þ and notH�, which is defined

as the supremum of H�ð�Þ over all partitions a. For this reason, the character-

ization of randomness devised in the context of communication theory strictly

speaking applies toH�ð�Þ rather thanH�. However, there is a close connection

between the two: whenever H�40, there is trivially at least one partition for

whichH�ð�Þ40. In this case,� is random in precisely the way described above

with respect to this partition, and more generally with respect to all partitions

for which H�ð�Þ40. For this reason, statements about H� and H�ð�Þ
naturally translate into one another.

This said, we obtain the following characterization: if an automorphism has

positive KSE, then whatever the past history of the system, we are on average

not able to predict with certainty in what cell of the partition the system’s state
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will lie next. And this will be the case forever: there is no ‘cut-off time’ after

which we have gathered enough information to predict what will happen in the

entire future. We can collect as much knowledge about the system’s past as we

like and we are still left uncertain about its future. On average, we are just

never sure about what happens next, since the past history does not convey

certainty onto what will happen in the future (however, we may be certain of

what happens at the next step at some isolated instants of time). In short, the

past history does not determine the future.

Moreover, the magnitude of the KS entropy is a measure of how great our

failure to predict the future will be; the greater the entropy, the more uncertain

we are about the future.

From this it follows immediately that the dynamics obey the so-called 0–1

law of probability theory. This law states that even if we have complete

knowledge of the process’ behaviour in the past, the only events which we

can predict with certainty at the next step are those which have a probability

of either 0 or 1 independently of the past history (see Batterman [1993], p. 60).

5 Comparison with other accounts

In the last section, I presented a discussion of the unpredictability we find in

systems with positive KSE. This characterization is, to a large extent at least,

not new. However, it is only the link between the KSE and the information-

theoretic notion of entropy which makes a justification of this characterization

possible. In other words, it is the result obtained in the previous section that puts

this characterization on firm ground. In this section, I briefly show why this is so.

As I mentioned at the beginning, there are two other methods to link the

KSE with unpredictability or randomness: (1) Pessin’s theorem, which relates

the KSE to positive Liapunov exponents or (2) Brudno’s theorem, which

connects it to algorithmic complexity. I will now briefly discuss these options

and explain where the differences between them and an approach based on

the CTE lie.

(1) Liapunov exponents: Sensitive dependence on initial conditions is a distin-

guishing feature of chaotic behaviour. Initially arbitrarily close points in the

phase space produce markedly different trajectories. For this reason, the

slightest vagueness in the specification of the initial state renders long-term

predictions impossible because two initially indistinguishable states will evolve

into two distinguishable ones. Characteristically, trajectories in chaotic sys-

tems diverge exponentially and Liapunov exponents (LE) prove a good quan-

titative measure for the average rate of exponential divergence of two

trajectories. Hence, positive LE are indicative of unpredictable behaviour.

For this reason it is desirable to link the KSE to positive LE. And this is

what Pessin’s theorem achieves by stating that H� is basically equal to the sum
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of the positive LE of the system (see, for instance, Eckmann & Ruelle [1985],

p. 394; Lichtenberg & Liebermann [1992], p. 304).

This is a valid argument. But it does not take us as far as we can go. Nothing

has been said about the time span of the unpredictablity (will it last forever?);

nothing has been said about how quickly predictions break down (after one

time step? after two? after ten?), and no mention of the past history has been

made (how does knowledge of the past history influence our predictive

abilities?). But these questions are of great interest in the context of physics.

(2) Algorithmic complexity: An important account defines randomness in

terms of algorithmic complexity. Roughly speaking, the algorithmic complex-

ity (AC) of a sequence (here �t1
l1
�t2
l2
. . .�tk

lk
) is the length of the shortest computer

program we have to provide in order to get a universal Turing machine to

reproduce (compute) the sequence. We then define a sequence to be random

if the shortest program of this sort has essentially the length of the sequence itself

(that is, the program basically says ‘print �t1
l1
�t2
l2
. . .�tk

lk
’). (For details, see Cover

& Thomas [1991], pp. 144–82).

This notion of randomness can be connected to the KSE by invoking Brudno’s

theorem,whichstatesthatforalmostalltrajectories(i.e.sequences�t1
l1
�t2
l2
. . .�tk

lk
) the

AC of the trajectory equals the KSE of the system (Brudno [1978]; for discus-

sions, see Alekseev & Yakobson [1981]; Batterman & White [1996]). Hence we

can say that the KSE is a measure of random behaviour in the sense of AC.

This is a very elegant way to interpret the KSE in terms of randomness. But

is it really what we need? I think that this account is less attractive than it

initially appears. The term ‘randomness’ may refer to many different things

in different contexts, and it is beyond the scope of this paper to discuss the

variety of options. However, in the context of dynamical systems, what we

mean by ‘random behaviour’ is unpredictable behaviour. At the most basic

level, we say that an event is random if there is no way to predict its occurrence

with certainty. Likewise, a random process is one for which we are not able to

predict what happens next. That is, what we have in mind when we call the

behaviour of a dynamical system ‘random’ is our inability to predict its future

behaviour, and any definition of randomness we employ in this context must

somehow do justice to this intuition. But this is not the case with AC. It does

not make reference to prediction and it is not clear how a connection between

AC and predictability might be established since it is concerned only with the

reproduction of a previously given sequence.

6 Product versus process randomness

I would like to conclude this paper by discussing a consequence of the above

result for the notion of randomness characteristic of chaotic systems. Two
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basic types of randomness have been distinguished, namely process and pro-

duct randomness (see Earman [1986], pp. 137–8). First, we are faced with

process randomness (also referred to as genesis randomness) if we are faced with

a process which operates without a hard and fast principle. A process involv-

ing genuine chance, for instance, belongs to this category. Second, the output

of a process exhibits product randomness (also called performance randomness)

if it is lacking a discernible pattern or if it is simply ‘out of shape’ in one sense

or another. It is clear that product randomness is not an absolute concept. As

in the case of simplicity, we have strong and pervasive intuitions, but it is

difficult to cash out in an objective sense what these amount to; what we

consider as patternless depends (to some extent at least) on our point of view.

These two notions of randomness do not generally coincide. On the one

hand, a sequence that is random in the product sense need not necessarily be

the output of a genuinely random process. So-called ‘random number gen-

erators’ in digital computers are a case in point. They are programs that are set

up in such a way that the sequences they produce look random, but all the

program performs are simple arithmetical manipulations of numbers which do

not involve any stochastic element. On the other hand, process randomness is

no sure guarantee for performance randomness, though it leads to strong

expectation of a random product. It is in principle possible that a random

process accidentally produces a highly ordered sequence. For instance, it is

possible that if we flip a coin 1000 times we obtain 1000 heads.

For this reason it is interesting to note that in the case of a system with

positive KSE the extensions of these two notions coincide as a consequence of

the above theorem. The argument runs as follows. First, AC is commonly

taken to be a notion of product randomness because it defines randomness in

terms of the computational power needed to reproduce a given sequence.

Second, my discussion of the CTE shows that it is a notion of process ran-

domness: the focus is on the process, in that we ask at every step what the

uncertainty about the next step is. Third, Brudno’s theorem states that the

KSE is equivalent to the AC for almost and trajectories of a system. The above

theorem states that the CTE is equivalent to the KSE. Hence, AC is equiva-

lent to the CTE for almost all trajectories. The punch line of this is that the last

equivalence equates notions of process and product randomness. This means

that whenever a dynamical system behaves randomly in a process sense

(cashed out in terms of CTE), almost all of its trajectories exhibit product

randomness (in the sense AC), and vice versa. In short, product and process

randomness are extensionally equivalent.

This has a bearing on the type of randomness we find in chaotic systems. It

has been claimed recently, for instance, that chaotic systems exhibit only

product but not process randomness: ‘If there is to be randomness in chaotic

models, it must be randomness in the product sense—since, by hypothesis, we
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are there dealing with models with thoroughly deterministic dynamics (the

‘‘processes’’ are entirely non-random)’ (Smith [1998], p. 149). However, if we

grant that K-systems are chaotic,6 then doubt is cast on this claim since

K-systems exhibit both product and process randomness.

Proponents of the argument in question might now counter that the under-

lying dynamics are thoroughly deterministic and for this reason there cannot be

any process randomness at the very ‘basic level’. True, at the level of ‘mathe-

matical’ trajectories and exact initial conditions there is no randomness. But this

reply is beside the point: chaos and randomness only become an issue in

dynamical systems once the dynamics are discussed at the coarse-grained level;

as long as we assume that unlimited precision is available, there is no

unpredictability or any other symptom of chaos. But once we go to the

coarse-grained level, the system exhibits both product and process randomness.

Appendix: Proofs of Theorems 1 and 2

In order to prove the two main theorems, five lemmas are needed. The proof of Lemmas

1 and 3 can be found in Arnold & Avez ([1968], p. 38); the other proofs are trivial.

Lemma 1: Hð� _ bÞ ¼ Hð�Þ þHðb=�Þ
Lemma 2: Hð�Þ ¼ Hð��Þ
Lemma 3: �ð� _ bÞ ¼ �� _ �b

Lemma 4: Hð� _ bÞ ¼ Hðb _ �Þ
Lemma 5: _ is associative: � _ b _ g ¼ ð� _ bÞ _ g ¼ � _ ðb _ gÞ

Proof of Theorem 1: For the case of an automorphism generated by a mapping

we have �ti!tj ðAÞ ¼ �j�iðAÞ (see above). Then (17) becomes:

�HHkð�Þ ¼ �
Xn

l1; ...; lk¼1

mð�lk \ � � � \ �k�1�l1Þ
Xn
i¼1

z

�
mð�i \ ��lk \ � � � \ �k�l1Þ
mð�lk \ � � � \ �k�1�l1Þ

�

ð29Þ

Using the fact that � is area preserving we get mð�lk \ � � � \ �k�1�l1Þ ¼
mð��lk \ � � � \ �k�l1Þ. Plugging this into Eqn (29) and taking the associativity of

set intersection into account we obtain:

�HHkð�Þ ¼ �
Xn

l1; ...; lk¼1

mð��lk \ � � � \ �k�l1Þ
Xn
i¼1

z

�
mð�i \ f��lk \ � � � \ �k�l1gÞ

mð��lk \ � � � \ �k�l1Þ

�

ð30Þ

6 I take it that being a K-system is sufficient for chaos but it is clearly not necessary. KAM-type

systems, for instance, exhibit chaotic beaviour but they are not K-systems. Furthermore,

dissipative systems, to which the notion of being a K-system does not apply, can be chaotic.
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Now note that what the first sum effectively does is sum over all elements of a partition

consisting of all intersections ��lk \ � � � \ �k�l1 . This partition, however, is just

�� _ � � � _ �k�. Furthermore, compare Eqn (30) with the definition

of the conditional entropy in Eqn (22). We then obtain: �HHkð�Þ ¼
Hð�=�� _ � � � _ �k�Þ.

Proof of Theorem 2 by weak induction on k:

Base case:

Hð� _ ��Þ ¼ Hð�Þ þHð�=��Þ.Proof:Hð� _ ��Þ ¼ Hð�� _ �Þ, by Lemma 4, and

Hð�� _ �Þ ¼ Hð��Þ þHð�=��Þ by Lemma 1. Now use Lemma 2 and get

Hð��Þ þHð�=��Þ ¼ Hð�Þ þHð�=��Þ.

Inductive step:

Hð� _ �� _ � � � _ �kþ1�Þ ¼ Hð�Þ þ � � � þHð�=�� _ � � � _ �kþ1�Þ. Proof: Consider

Hð� _ �� _ � � � _ �kþ1�Þ. With Lemmas 5 and 4 this is Hð½��_ � � � _
�kþ1�� _ �Þ, and now applying Lemma 1 yields Hð�� _ � � � _ �kþ1�Þþ
Hð�=½�� _ � � � _ �kþ1��Þ. Lemmas 2 and 3 together with the fact that �

is measure-preserving give: Hð� _ � � � _ �k�Þ þHð�=½�� _ � � � _ �kþ1��Þ. With

the induction hypothesis, this is Hð� _ �� _ � � � _ �kþ1�Þ ¼
Hð�Þ þ � � � þHð�=½�� _ � � � _ �kþ1��Þ.
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