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In this note we correct a few inaccuracies in ‘The Ergodic Hierarchy, Random-
ness and Hamiltonian Chaos’ by Berkovitz, Frigg and Kronz (2006), ‘BFK’
for short. None of the points mentioned here affect the central claims of the
paper.

1. Construction of the σ-algebra σn,r (p. 665).

When discussing K-systems, BFK say how to construct the minimal σ-
algebra σn,r. The problem is that the method of construction as stated does
not in general yield a set that has the structure of a sigma algebra. However,
BFK do not need this. All that is needed for the analysis in the paper is that
the sets specified in the ‘construction’ are members of the minimal sigma
algebra σn,r, and this is the case.

The problem is that a sigma algebra like σn,r cannot, in general, be con-
structed at all. The minimal σ-algebra of a set E ⊆ P (X), σ(E), is defined
as

σ(E) :=
⋂

A⊆P (X), E⊆A, A is a σ-algebra

A, (1)

where P (X) is the power set of X. Now per definition σn,r = σ(E ′), where
E ′ := {T kAi | k ≥ n; i = 1 . . . r}. If E ′ had always a finite number of ele-
ments, then σ(E ′) would be constructible. This is so because, first, there is
an explicit algorithm for constructing the minimal algebra of a set E, α(E),
and second, for finite E it holds that σ(E) = α(E) (see standard textbooks
on measure theory). However, E ′ is not generally finite. For instance, for
the Bernoulli partition of the baker’s transformation E ′ is countably infinite.
And for the minimal σ-algebra of a countably infinite set E the suggested
construction method cannot work simply because no construction method
can. If the suggested method worked, it would also work for the Borel σ-
algebra of [0, 1], which is the minimal σ-algebra of the countable set of all
open intervals in [0, 1] with rational endpoints, i.e. it is the set σ(E ′′), where
E ′′ := {(a, b) | a, b ∈ Q ∩ [0, 1]}. But the Borel σ-algebra of [0, 1] is provably
not constructible. Thus the suggested construction method cannot work.

2. The relation between the KS-entropy and K-systems (p. 667)

There are systems with positive KS-entropy that are not K-systems. Hence
it is not the case that a system is a K-system iff it has positive KS-entropy.
Instead, the relation between being a K-system and having positive KS-
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entropy is the following. For a dynamical system [X, Σ, µ, T ] the entropy of
T with respect to the partition α = {α1, . . . , αn}, n ∈ N, is defined as

H(T, α) := lim
k→∞

(1/k)H(α ∨ Tα ∨ ... ∨ T k−1α), (2)

whereH(α) :=
∑n

i=1 µ(αi) log(µ(αi)) with µ(αi) log(µ(αi)) := 0 for µ(αi) = 0
(Cornfeld et al. 1982, pp. 246-250). A dynamical system [X, Σ, µ, T ] is a
K-system iff it has completely positive entropy, meaning that H(T, α) is
positive for every non-trivial partition α, where a nontrivial partition is a
partition which does not have an atom of measure one. See ibid., p. 283,
which is also cited by BFK.

The KS-entropy is defined as the supremum of H(T, α) over all partitions
α. From this follows immediately that every K-system has positive KS-
entropy. However, the converse is not true. That is, there are systems for
which there is a non-trivial partition α′ such that H(T, α′) = 0 and yet
the KS-entropy is positive because there is another partition α′′ for which
H(T, α′′) > 0. Take, for instance, the dynamical system where X := [−1, 1],
Σ is the Lebesgue σ-algebra on [−1, 1], µ is the normalised Lebesgue measure
and

T (x) := 2x if |x| ≤ 1

2
and 2 sgn(x)(1− |x|) if

1

2
< |x| ≤ 1, (3)

where sgn(x) gives the sign of x. In fact, the system consists of the tent
map and its mirror image (mirrored at the origin). One can prove that for
the partition α′ := {[−1, 0), [0, 1]} H(T, α′) = 0 and that for the partition
α′′ := {[−1, 0), [0, 1/2), [1/2, 1]} H(T, α′′) > 0. Hence this system has posi-
tive KS-entropy but is no K-system.

3. Bernoulli systems (pp. 670-671 and p. 677)

A and B in (C−B) do not range over all sets in Σ, but only over the atoms of
the ‘Bernoulli partition’ α or one of its iterates T kα. Remember that for the
Bernoulli partition α the independence condition holds: µ(T nαi ∩ Tmαj) =
µ(T nαi)µ(Tmαj) for all αi, αj ∈ α and m 6= n, m,n ∈ Z. Moreover, (C−B)
holds not only for positive integers, but for positive and negative integers.
Hence a correct statement of (C−B) is:

C(T nB,A) = 0 for all n ∈ Z \ {0} and for all A, B ∈ β, (4)

where β := T kα for the some k ∈ Z (i.e. β is either the Bernoulli partition
α or one of its iterates).
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That the condition yields wrong results when applied to sets that are
not atoms of the Bernoulli partition or one of its iterates can be seen in the
following example. Consider the dynamical system of the baker’s transfor-
mation, where X is the unit square, Σ is the Lebesgue σ-algebra, µ is the
Lebesgue-measure and T is given by

T (x, y) := (2x,
y

2
) if 0 ≤ x <

1

2
, (2x− 1,

y + 1

2
) if

1

2
≤ x ≤ 1. (5)

Let A := {(x, y) | 0 ≤ x ≤ 1, 1/2 ≤ y ≤ 3/4} and B := {(x, y) |
1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1/2}. Then one easily calculates that C(TB,A) =
3/16 6= 0.

The condition (C−B*) should be amended accordingly. The correct ver-
sion is: since all T iα are independent, for finite or infinite intersections of
the form T nA1 ∩ T n+1A2 ∩ . . . the following condition holds:

C(T nA1 ∩ T n+1A2 ∩ . . . , A0) = 0, (6)

for all n ∈ N and all A0, A1, . . . ∈ β, where β is defined as above.
The claims of Section 3.5.4 (p. 677) need to be changed accordingly.

At this point it is also worth explaining in some detail why this condition
holds (this point is only briefly mentioned in Footnote 8 of the paper, in
which BFK refer the reader to Mañé’s (1983, p. 87) formulation of the inde-
pendence condition, which is basically the independence condition Petersen
(1983) gives). The argument is as follows. Consider Petersen’s (1983, p. 275)
definition of independence of a partition: α is independent iff for any distinct
powers i1, . . . , ir ∈ Z and not necessarily distinct Aj ∈ α, j = 1, . . . , r,

µ(T i1A1 ∩ . . . ∩ T irAr) = µ(A1) . . . µ(Ar). (7)

For finite intersections (6) follows immediately. For infinite intersections
consider the infinite intersection B := A0 ∩ T nA1 ∩ T n+1A2 . . . with Ai ∈ β
arbitrary, where β is defined as above, and set Bl := A0∩T nA1∩. . . T n+lAl+1.
Then Bl ↘ B for l → ∞, where An ↘ A is defined as A0 ⊇ A1 ⊇ . . . and
∩n≥0An = A. Since per assumption µ(X) <∞, µ is continuous from above,
i.e. for An ↘ A it holds that µ(A) = limn→∞ µ(An). Therefore, we get from
(7):

µ(B) = lim
l→∞

µ(Bl) = lim
l→∞

µ(A0)
l∏

m=0

µ(Am+1) = µ(A0)
∞∏
m=0

µ(Am+1). (8)
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Likewise, for B′ := T nA1 ∩ T n+1A2 . . . with Ai ∈ β arbitrary, we get that
µ(B′) =

∏∞
m=0 µ(Am+1). Hence

C(T nA1 ∩ T n+1A2 ∩ . . . , A0) = µ(B)− µ(A0)µ(B′) = 0, (9)

and this is all we need to show.

4. Probabilistic relevance and the relevance (p. 672)

The definition of the probabilistic relevance and the relevance is incomplete
in that it makes no statement for the case p(Bt1) = 0. Intuitively, a set
that has probability zero cannot have any probabilistic relevance, and so it
is natural to augment the definition as follows:

(Rp) Rp(B
t1 , At) := p(At|Bt1)− p(At) if p(Bt1) > 0 and 0 otherwise. (10)

The definition of the relevance R should be amended accordingly:

(R) R(Bt1 , At) := Rp(B
t1 , At)p(Bt1) = p(At1&Bt)− p(At)p(Bt1) (11)

if p(Bt1) 6= 0 and 0 otherwise.

5. Condition (µ-DynT) for discrete systems (p. 674)

On p. 674 BFK state that the discrete instants are separated by unit time
intervals. This can but need not be the case. For instance, if the discrete
transformation is a Poincaré map of a continuous system, it is not usually the
case that the instants of time are separated by unit time intervals. For this
reason it is not generally true that Tti→tBi = T t−tiBi for all i ∈ {1, . . . , r}.

This problem can be fixed by choosing the ti such that they mark the
times at which T is applied to X; that is, the mapping T is applied to the
system at t1, at t2, at t3, etc., and at no other time. Thereby we choose the
labelling of the instants of time such that the instances are ordered ‘back-
wards’: tr < tr−1 < . . . < t1 < t, where t is ‘now’. It then follows that the
map has been iterated i times between ti and t; hence Tti→tBi = T iBi for all
i ∈ {1, . . . , r}. Revising (µ-DynT) accordingly yields:

For all instants of time t and for all t1, t2, . . . , tr, (12)

where tr < tr−1 < . . . < t1 < t, and for all A,B1, . . . , Br ∈ Σ

p(At&Bt1
1 & . . .&Btr

r ) = µ(A ∩ TB1 ∩ . . . ∩ T rBr).
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When discussing dynamical conditions (like K-mixing) that disregard the
first n steps of tr < tr−1 < ... < tn < . . . < t1 < t, this condition becomes
p(At&Btn

n & . . .&Btr
r ) = µ(A ∩ T nBn ∩ T n+1Bn+1 ∩ . . . ∩ T rBr).

The discussion that follows in the paper has to be adapted as just done
for (µ-DynT), but none of Berkovitz et al.’s claims is affected by this.
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